Compare Mass-Spring &amp; Pendulum

# Compare Mass-Spring &amp; Pendulum - Dr.Chang Pendulum...

This preview shows pages 1–2. Sign up to view the full content.

Dr. Chang   Mass-Spring Simple  Pendulum Restoring Force F s  = - kx F t  = - mg Θ Differential Eqn   Angular Frequency  ω  =  ω  =   ω Solution to Differential Eqn x(t) = A cos( t +  ) ω φ      (t) =  Θ Θ max  cos( t +  ) ω φ Max Displacement from Equilibrium ±A from x=0 ± Θ max  from   = 0 Θ Speed v(t) = -  A sin( t +  ) ω ω φ        d /dt = -    Θ ω Θ max  sin( t +  ) ω φ Maximum Speed v max  =  A ω          (d /dt) Θ max  =  ω   Θ max Acceleration         a(t) = -  ω 2 A cos( t +  )       (d ω φ 2 /dt Θ 2 ) = -  ω Θ max  cos( t +  ) ω φ Maximum Acceleration a max  =  ω 2 A      (d 2 /dt Θ 2 ) max  =  ω Θ max Period T =    =      T =    =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

Compare Mass-Spring &amp; Pendulum - Dr.Chang Pendulum...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online