Compare Mass-Spring & Pendulum

Compare Mass-Spring & Pendulum - Dr.Chang Pendulum...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Dr. Chang   Mass-Spring Simple  Pendulum Restoring Force F s  = - kx F t  = - mg Θ Differential Eqn   Angular Frequency  ω  =  ω  =   ω Solution to Differential Eqn x(t) = A cos( t +  ) ω φ      (t) =  Θ Θ max  cos( t +  ) ω φ Max Displacement from Equilibrium ±A from x=0 ± Θ max  from   = 0 Θ Speed v(t) = -  A sin( t +  ) ω ω φ        d /dt = -    Θ ω Θ max  sin( t +  ) ω φ Maximum Speed v max  =  A ω          (d /dt) Θ max  =  ω   Θ max Acceleration         a(t) = -  ω 2 A cos( t +  )       (d ω φ 2 /dt Θ 2 ) = -  ω Θ max  cos( t +  ) ω φ Maximum Acceleration a max  =  ω 2 A      (d 2 /dt Θ 2 ) max  =  ω Θ max Period T =    =      T =    = 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

Compare Mass-Spring & Pendulum - Dr.Chang Pendulum...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online