Dynamics_Hibbeler_CH14_5and6

Dynamics_Hibbeler_CH14_5and6 - CONSERVATIVE FORCES,...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
CONSERVATIVE FORCES, POTENTIAL ENERGY AND CONSERVATION OF ENERGY Today’s Objectives: Students will be able to: 1. Understand the concept of conservative forces and determine the potential energy of such forces. 2. Apply the principle of conservation of energy. In-Class Activities: Check Homework Reading Quiz Applications Conservative Force Potential Energy Conservation of Energy Concept Quiz Group Problem Solving Attention Quiz
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
READING QUIZ 1. The potential energy of a spring is ________ A) always negative. B) always positive. C) positive or negative. D) equal to ks. 2. When the potential energy of a conservative system increases, the kinetic energy _________ A) always decreases. B) always increases. C) could decrease or D) does not change. increase.
Background image of page 2
APPLICATIONS The weight of the sacks resting on this platform causes potential energy to be stored in the supporting springs. As each sack is removed, the platform will rise slightly since some of the potential energy within the springs will be transformed into an increase in gravitational potential energy of the remaining sacks. If the sacks weigh 100 lb and the equivalent spring constant is k = 500 lb/ft, what is the energy stored in the springs?
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
APPLICATIONS (continued) The boy pulls the water balloon launcher back, stretching each of the four elastic cords. If we know the unstretched length and stiffness of each cord, can we estimate the maximum height and the maximum range of the water balloon when it is released from the current position ?
Background image of page 4
The roller coaster is released from rest at the top of the hill. As the coaster moves down the hill, potential energy is transformed into kinetic energy. What is the velocity of the coaster when it is at B and C? Also, how can we determine the minimum height of the hill
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 19

Dynamics_Hibbeler_CH14_5and6 - CONSERVATIVE FORCES,...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online