Chapter_02-TVOM

# Chapter_02-TVOM - CHAPTER2 TimeValueofMoney Futurevalue n...

This preview shows pages 1–13. Sign up to view the full content.

2-1 Click to edit Master subtitle style CHAPTER 2 Time Value of Money n Future value n Present value n Annuities n Rates of return n Amortization

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2-2 Time lines n Show the timing of cash flows. n Tick marks occur at the end of periods, so  Time 0 is today; Time 1 is the end of the  first period (year, month, etc.) or the  CF 0 CF 1 CF 3 CF 2 0 1 2 3 I%
2-3 Drawing time lines 100 100 100 0 1 2 3 I% 3 year \$100 ordinary annuity 100 0 1 2 I% \$100 lump sum due in 2 years

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2-4 Drawing time lines 100 50 75 0 1 2 3 I% -50 Uneven cash flow stream
2-5 What is the future value (FV) of an initial  \$100 after 3 years, if I/YR = 10%? n Finding the FV of a cash flow or series of cash  flows is called compounding. n FV can be solved by using the step-by-step,  financial calculator, and spreadsheet methods. FV = ? 0 1 2 3 10% 100

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2-6 Solving for FV: The step-by-step and formula methods n After 1 year: n FV1 = PV (1 + I) = \$100 (1.10)       = \$110.00 n After 2 years: n FV2 = PV (1 + I)2 = \$100 (1.10)2       =\$121.00 n After 3 years: n FV3 = PV (1 + I)3 = \$100 (1.10)3       =\$133.10
2-7 Solving for FV: The calculator method n Solves the general FV equation. n Requires 4 inputs into calculator, and will  solve for the fifth. (Set to P/YR = 1 and  END mode.) INPUTS OUTPU T N I/Y R PM T PV FV 3 10 0 133.1 0 - 100

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2-8 PV = ? 100 What is the present value (PV) of \$100  due in 3 years, if I/YR = 10%? n Finding the PV of a cash flow or series of  cash flows is called discounting (the reverse  of compounding). n The PV shows the value of cash flows in  terms of today’s purchasing power. 0 1 2 3 10%
2-9 Solving for PV: The formula method n Solve the general FV equation for PV: n PV = FVN / (1 + I)N n PV = FV3 / (1 + I)3      = \$100 / (1.10)3      = \$75.13

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2-10 Solving for PV: The calculator method n Solves the general FV equation for PV. n Exactly like solving for FV, except we  have different input information and are  INPUTS OUTPU T N I/Y R PM T PV FV 3 10 0 100 - 75.13
2-11 Solving for I: What interest rate would cause \$100 to  n Solves the general FV equation for I. n Hard to solve without a financial calculator  INPUTS OUTPU T N I/Y R PM T PV FV 3 8 0 125.9 7 - 100

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2-12 Solving for N: If sales grow at 20% per year, how long  n Solves the general FV equation for N.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 43

Chapter_02-TVOM - CHAPTER2 TimeValueofMoney Futurevalue n...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online