04 de Moivres Theorem

# 04 de Moivres Theorem - 4 de MOIVRE’S THEOREM 1 One cube...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 4. de MOIVRE’S THEOREM 1. One cube root of z is i 2 2 5 2 2 5 + (a) [3 marks] Write z in exact Cartesian form. __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ (b)[2 marks] State the other two cube roots of z in exact polar form. __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ VET Calculus 23 4. de Moivre’s Theorem 2. Evaluate ( 29 ( 29 7 7 1 1 i i- + + using de Moivre’s rule. __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ 3. Use de Moivre’s Theorem to express θ 4 cos in terms of θ cos and use your result to solve the equation 8 x 4 – 8 x 2 + 1 = 0. __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________...
View Full Document

## This note was uploaded on 09/01/2010 for the course MATH MAT1300 taught by Professor Mcdonald during the Spring '10 term at Acadia.

### Page1 / 9

04 de Moivres Theorem - 4 de MOIVRE’S THEOREM 1 One cube...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online