09 Techniques of Differentiation

09 Techniques of Differentiation - 9. TECHNIQUES OF...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 9. TECHNIQUES OF DIFFERENTIATION 1. Find dx dy in each of the following cases. (a) [3 marks] y = e x cos x __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ (b)[4 marks] y 2 ( xy 6) = x 3 __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ (c) [4 marks] dt e y t x x ) sin( - = __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ VET Calculus 50 9. Techniques of Differentiation 2. Consider the function f ( x ) = axe bx where a and b are constants. (a) [3 marks] Find f ( x ) and f ( x ). __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ (b)[6 marks] Determine values for a and b so that f has a maximum of 1 at . Justify your answer using your answer to part (a). __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________...
View Full Document

This note was uploaded on 09/01/2010 for the course MATH MAT1300 taught by Professor Mcdonald during the Spring '10 term at Acadia.

Page1 / 17

09 Techniques of Differentiation - 9. TECHNIQUES OF...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online