324_Book

# Apparently these other language designers viewed them

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ½ Ü ½ Ü ¾ Û Û Û Ü¼ µ ¾Ì Û ´ ÜÛ ½ Ü ¾ Û Ü¼ µ where in the expression on the left-hand side, we have made additional copies of bit ÜÛ ½ . The proof follows by induction on . That is, if we can prove that sign-extending by one bit preserves the numeric value, then this property will hold when sign-extending by an arbitrary number of bits. Thus, the task reduces to proving that ¾Ì Û·½ ´ ÜÛ ½ Ü ½ Ü ¾ Û Û Ü¼ µ ¾Ì Û ´ ÜÛ ½ Ü ¾ Û Ü¼ µ Expanding the left-hand expression with Equation 2.2 gives ¾Ì Û·½ ´ ÜÛ ½ Ü ½ Ü ¾ Û Û Ü¼ µ Ü Ü Ü Ü Û Û ½¾ Û ½ ¼ · Ü¾ Û Û Û ½¾ Û · Ü ½¾ ½ · Û ¾ ¼ Ü¾ Û ½ ´¾ Û ¾ Û ½ µ · ¾ ¼ Û ¾ ¼ Ü¾ Û ½¾ Û ½ · Û Ü¾ Ü¼ µ ¾Ì Û ´ ÜÛ ½ Ü ¾ Û The key property we exploit is that ¾Û · ¾Û ½ ¾Û ½. Thus, the combined effect of adding a bit of weight ¾Û and of converting the bit having weight ¾Û ½ to be one with weight ¾Û ½ is to preserve the original numeric value. One point worth making is that the relat...
View Full Document

Ask a homework question - tutors are online