If we run the signal2 program on a solaris system it

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: llows processes to interrupt other processes. A signal is a message that notifies a process that an event of some type has occurred in the system. For example, Figure 8.23 shows the 30 different types of signals that are supported on Linux systems. Each signal type corresponds to some kind of system event. Low-level hardware exceptions are processed by the kernel’s exception handlers and would not normally be visible to user processes. Signals provide a mechanism for exposing the occurrence of such exceptions to user processes. For example, if a process attempts to divide by zero, then the kernel sends it a SIGFPE signal (number 8). If a process executes an illegal instruction, the kernel sends it a SIGILL signal (number 4). If a process makes an illegal memory reference, the kernel sends it a SIGSEGV signal (number 11). Other signals correspond to higher-level software events in the kernel or in other user processes. For example, if you type a ctrl-c (i.e., press the ctrl key and the c key at the same time) while a process is running in the foreground, then the kernel sends a SIGINT (number 2) to the foreground process. A process can forcibly terminate another process by sending it a SIGKILL...
View Full Document

This note was uploaded on 09/02/2010 for the course ELECTRICAL 360 taught by Professor Schultz during the Spring '10 term at BYU.

Ask a homework question - tutors are online