{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# quiz2sol - Math 241 CD3/CD4 Quiz 2 1(5 points Evaluate 2 0...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 241 CD3/CD4 Quiz 2 1. (5 points) Evaluate 2 0 4 y2 Name: y cos(x2 )dxdy . √ 0 4 √ y= x 2 1.5 1 0.5 4 x 4 = 0 y cos(x2 )dydx = 0 4 y2 cos(x2 ) 2 = sin 16/4. dx y =0 = 1 2 3 4 0 x 1 cos(x2 )dx = sin(x2 ) 2 4 0 2. Setup but DO NOT evaluate the integrals for the following. (a) (5 points) The area of the region bounded by y = x2 , y = x2 − 5, and y = 4. 4 2 −2 1 2 3 4 2 x2 3 4 dydx + x2 −5 √ y +5 √ − y +5 dydx + −2 x2 −5 √ 4 −y 0 √ − y +5 2 dydx. x2 −5 √ y +5 4 -3 -2 -1 −3 0 -2 or −5 dxdy + dxdy + 0 √ y dxdy. -4 (b) (5 points) The volume of the solid cut out of the sphere x2 + y 2 + cylinder x2 + y 2 = 1. 3 z2 2 = 9 by the 2 1 −1 √ 1−x2 2 √ 9−x2 −y 2 1 -3 -2 -1 1 2 3 -1 or 0 √ √ − 1−x2 −2 9−x2 −y 2 √ 2 9−r 2 1 2π 0 √ −2 9−r 2 dzdydx rdzdrdθ. -2 -3 3. (5 points) Evaluate x2 + y 2 ≤ 3. 1.75 1.5 1.25 1 0.75 0.5 0.25 -1.5 -1 -0.5 0.5 1 1.5 R x2 + y 2 + 1dA, where R is the upper half part of the disk π √ 0 3 x2 R + y2 + 1dA = 0 π √ r2 + 1rdrdθ √ r= 3 π = 0 12 (r + 1)3/2 3 dθ = r =0 0 7 7π dθ = . 3 3 1 ...
View Full Document

{[ snackBarMessage ]}