Chapter+14-2 - Peter Vollhardt University of California at...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Peter Vollhardt University of California at Berkeley I, too, star TigreDe Bue Aire 1952 lta, nos s, te d small…….. Chapter 14 Delocalized Pi Systems Delocalized Re thedoublebond call Trigonal Theπ bond is e rich: -rich: The E attack, attack add) add Thelobe of thep-orbitals: s Pe ndicular t o thesigm rpe a Pe f ram and paralle t o e e l paralle ach othe r. othe Ethe F ne R∙ 2-Propenyl (Allyl) 2-Propenyl H Que stion: What about adding a third p-orbital t hird -orbital adjace to thedoublebond? nt adjace I s the som thing spe re e cial? Or: Is the any spe re re cial activity at the Or: carbons adjace to a doublebond? nt carbons Re placing oneof thehydroge in e newith anothe sp2ns the r sp Re hybridize carbon give a prope d s nylic or allylic syste . m hybridize allylic Allylic position Obse rvations: a. a. b. H 87 kcal m -1: We ol We ak! H 101 kcal m -1 ol L S1 N S 1 re activity of allylic carbon likethat of RsecX, X, N e n though it is prim ve ary! B H B 50 c. H pKa ~ 40: Acidic! Acidic! + Clearly: Allylic - are stabilized. · Why? Re sonance ! Why? Re CH 2 H 2 C CH 2 H 2 C CH 2 H 2 C S notation: Dotte line hort ds MO Picture of 2-Propenyl (Allyl) MO 3 p Orbitals Orbitals 3 Mole cular Orbitals of E H+ HNode Now le look again at e ne t’s the Re : Bonds m by ove call Bonds ade rlap orbitals. Le look again at H2. orbitals. t’s .+ H. H HH Bonding Antibonding H · H · +H H+ + H+ I n phase H+ + HOut of Out phase phase S of thewavefunction, ign Not charge ! H2 +H σ bond σ* E π* π σ CH2 CH2 π bond What happe to this picturewhe we ns n What inte with anothe p orbital? ract r Interactions of a singly occupied p-orbital -orbital with each of the π molecular orbitals 1) 1) I nte raction of thep atom orbital with the ic Inte π bonding orbital cause thep orbital le l s ve bonding t o m up and theπ bonding le l t o m ove up ve ove down. down I nte raction of thep atom orbital with the ic Inte π* antibonding orbital cause thep orbital s le l t o m down t o where it was ve ove down le originally and that of theπ* originally antibonding orbital to m up. ove up antibonding Thetwo e cts on thep orbital cancel ffe The cancel e othe out; thetwo π orbitals are ach r pushe apart: “e rgy splitting”; d ne im portantly, theπ bonding orbital goes down. down Ethe ne π* π* 0 up Nonbondin g MO 2) p E π unchange d 3) π down Allyl p Orbital Allylic radical is stabilize by 13.5 kcal m -1. d ol Re sulting picture : # of e de nds on pe +,·,- π* 0 ? p E H 2C π H C CH2 Location Location of +,·,iisat s te ini rm te Reactivity of Allylic Position Reactivity A. Radical Haloge nation C CH H HC Me chanism : I nitiation: 1. Br2 hυ or Δ + Br2 Low conc. C C C Br HHH Faste than addition! r + HBr . 2 Br . + Br . CCC HHH CCC HHH + HBr . Propagation: 2. C C H H HC CCC HHH . Br2 . C C C Br + HHH CCC HHH . Br Te ination: rm Te . + . CH CH Br 3. C H Br2 BrC C C HH H . + Br . Br . CH CH 2 C H C CH H HC CC C HH H Anything that traps radicals, including the“dirt” on thewalls of Anything theflask, contribute to te ination. s rm t he A convenient solid brominating agent: convenient N-Bromosuccinimide, NBS Trace s, Trace always pre nt in NBS se Low Low conc. conc. Me chanism ? :O : + :O H :: :O H : : N Br : : :O + H+ :Br :− : :N O: : Br : + N Br : :: + :B r :− : : : :: O: : :O : :O H : N: : :O :: S toichiom try: Br2 doe not show up, but is theactual brom e s inating spe s! cie doe : + Br Br: P r oton sh if t (ta utom e ri sm ; Se ct ion 1 3-7 ) AllylicF11 AllylicF11 :: :N : :O H Prope ge rate a sym e ne ne s sym trical allylic radical and only one m one product. For unsym e m m ixture . Ratios de nd s Ratios pe unsym trical syste s: m on %radical characte on e carbon and TS le r ach s ading to products. B. S 1: TheAllylic C ation is S tabilize d B. N 2 + CC C C HH H H + CC C C HH H H C C C HC H H HC l -H lO C H+ C C C H OH H H HC CC HC H HC H OH +H Two products C S 2: Fast! Theallylic TSis stabilize and theallylic carbon . N2: d TS is re lative e ctrophilic. ly le re TSde localize d ‡ sp = e -withdrawing 2 C l .. .. . . - δ δ C C C HC H H HC l 100 tim s faste than e r + NaI CC C C HH H I - Cl δ C C C HI H H HC +C l - D. Allylic Organom tallics e D. CH 3 CH2 Li H 2C C CH 3 O RC H H 2C C OH CH 2 C HR CH 3 + Li CH 3 Alte rnativepre paration: allylic Grignard re nts age Br + Mg M gBr Weshall e ncounte ne r utral analogs of allylic anions: CH2 X isoe ctronic to le X : : X = OR, S NR2 R, Conjugated Double Bonds Conjugated What about CCCC CCCC ? Nom nclature C e : is/trans; E/Z. Re w C vie hapte 11 r Nom S tability: He of hydroge ats nation (kcal m -1) ol ΔH˚ C 3(C 2)3C C 2 HHHH + H2 + 2 H2 1,5-He xadie ne -30.3 -60.5 But: 1,3-Butadie ne + 2 H2 -57.1 Re sonancee rgy of butadie ~ 3.5 ne ne Structure Structure Fast S re hort lativeto an alkane C Csinglebond ― (1.54 Å). But is this a good com parison? Orbitals Orbitals Antibonding Bonding C onjugation stabilize the odynam s rm ically, but it also incre s re ase activity, for e plein e ctrophilic additions (re w C xam le vie hapte 12). r (re Markovnikov addition with a twist: Fast CH CH + HC l Re ason: I nte e rm diatecation is also stabilize d Re 1,2-Addition 1,2-Addition (“kine tic”) (“kine C l - - 1,4-Addition C 1,4-Addition l (“the odynam rm ic”) (“the C l Te inal alke le stable rm ne ss Te than inte t han rnal CH + cis C l More stable HC lAddnF11 CH Less stable Kinetic vs Thermodynamic Control Kinetic Extended Conjugation Extended + HBr Quitere active e n , ve Quitere though t hough stabilize by d conjugation conjugation CH 3 CH 3 Br Thre products e CH 3 Cation also stabilize by conjugation d The odynam stability doe not always rm ic s The e qual lack of re activity Cyclohexatriene is Special Benzene Benzene C yclic array of six e ctrons has spe stability, calle cial d six le arom aticity (C hapte 15). r arom Be neis re nze lative ine to H2-cat, e ctrophile oxidants, in ly rt s, -cat, le com parison with he xatrie . ne com Extended Conjugation in Natural and Unnatural Products Unnatural Orangecolor of carrots Biological Biological de gradation de Vision Organic Conductors Organic He ge MacDiarm S e r, id, hirakawa, Nobe Prize2000 l Light e itting diode (LEDs) s Light m Conjugated Systems Undergo Special Transformations: Pericyclic Reactions Pericyclic Theconjugate π syste can re as a unit, involving both d m act The e . For e ple nds xam , 1. C ycloadditions: TheDiels-Alder reaction, a [4+2] The cycloaddition cycloaddition HC HC CH 2 CH 2 CH 2 + CH 2 Δ 20% HC HC H2 C CH 2 CH 2 Otto Die ls 1876-1954 Kurt Alde r 1902-1958 4π-4C -4C Die ne Die 2π-2C -2C Die nophile Die C H2 Nobe Prize1950 l C ycloadduct The Diels-Alder Reaction is The Chemoselective Chemoselective Die ls-Alde re r actions work be whe wepair an st n Die e -rich (push) die with an e -poor (pull) die nophile , (push) ne die or an e -poor die with an e ne -rich die nophile De nds on substitue pe nts: e -Donating: Alkyl, alkoxy, alkylthio Alkyl 3 3 3 2 Hype rconjugation C, H Re sonance COCH 3 H O, COCH 3 S OCH 3 HC H Eve though O is e gative(inductivee ct), re n -ne ffe sonancewins out. O e -Withdrawing: C , C , C N, NO FR NO F I nductive : CF F O CR H2 C C H O CR O CR H2 C C H O CR H2 C C H O CR 90% Re sonance : Exam : ple + Δ Doe not com tewith die s pe nophile re : lative e ly -rich. S eExam s of theTre in Re om ple nd activity of Die nophile and Die s s ne H3 C < < F3 C < Die nophile H3 C H3 C H3 C Diene Increasing reactivity NC < NC NC < < < H 3CO Mechanism: Concerted + Δ Orbital de scription: sp2 sp2 sp3 Die ls-Alde re r action re quire acce s ssing thele stables-cis ss conform ation CH3 CH3 H3C CH3 H s-cis s- tr ans s-cis s-tr ans Whe s-cis formis hinde d or n re im possible there , action slows or doe not s occur. Whe die is constraine s-cis, the n ne d t ransform ation is acce rate . le d Consequences of Concertedness Consequences S re cific: Re ntion of Die te ospe te nophile S re m te oche istry (ne C w —Cbonds gre n) e O CO CH 3 O CC3 OH 80% + CH3 C3 H C is O COCH 3 C is O COCH 3 90% + H 3C CH3 Trans Trans Re ntion of Die S re m te ne te oche istry Re OCH 3 N C CN OCH3 + OCH 3 Trans,trans Trans,trans (sam for cis,cis-die ) e ne (sam N C CN CN CN CN CN OCH3 O CH3 OCH 3 N C CN + OCH 3 C is,trans N C CN CN CN CN CN H 3CO Whe both partne areste oche ically de d: “Endo rule n rs re m fine ” Whe de rm s the approach. te de ine ir Endo/Exo Addition Endo/Exo S ubstitue point away nts f romdie ne S ubstitue point nts t oward die ne Usually faster, even though product less stable: Kinetic control DAF11 Anothe e ple r xam : CH 3 CH 3 H 3C Endo CN NC NC H H o H3C CN http://csi.che ie m .tu-darm /ak/im e m l/ Ge rally: ne o i i A o i A A + A WalbaC tF Dylan o i Re asons for e rulecom x. ndo ple LipshutzC tF S govia e Alkynes as Dienophiles Alkynes Ge rate1,4-cyclohe ne xadie s ne CO2 CH 3 CO2 CH 3 OCH 3 C re an act again again OCH 3 CO2 CH 3 CO2 CH 3 75% + CH2 O2 CH 3 CH2 O2 CH 3 2. Ele ctrocyclic Re actions: I ntramolecular ring closureand ope nings closure TheC ne ne The yclobute 1,3-Butadie Equilibrium Δ, Ea = 32.9 kcal 32.9 m -1 ol Exothe ic (ring rm strain re ase strain le d) hυ Light drive C be the odynam . n: an at rm ics Light Wave ngth de nde (can go e r le pe nt ithe way). way). Im e ml The1,3-C yclohe xadie 1,3,5ne The He xatrie Equilibrium ne He Light drive C be the odynam . n: an at rm ics Wave ngth de nde (can go e r le pe nt ithe way). way). Δ, Ea = 29.9 kcal 29.9 m -1 ol Endothe ic rm Endothe (C Cbe r than C C tte , and no ring strain pre nt) se hυ Im e ml Electrocyclic Reactions are Stereospecific Stereospecific Δ CH 3 Only! cis–3,4-Dim thylcyclobute e ne CH 3 CH 3 cis,trans–2,4-He xadie ne Δ Only! Trans CH 3 Trans,trans Movement of Substituents Movement C onrotatory: sam dire e ction sam CH 3 CH 3 Both e r Both ithe clockwiseor counte rclockwise S e : am product. product. The rotatein the y H C onrotatory H CH 3 H CH 3 Δ H Im e ml CH 3 H CH 3 H C onrotatory (clockwise ) (clockwise CH3 H H3 C H Δ C ounte rclockwiseconrotation in principlepossiblebut ste rically prohibite : d ste CH3 H CH 3 H Δ H H CH 3 CH 3 Fascinatingly, hυ goe disrotatory (rotation s disrotatory in oppositedire opposite ctions) CH 3 CH 3 hυ dis CH 3 CH 3 CH 3 CH 3 CH 3 hυ dis CH 3 Eve m startling: Thehe n xatrie /cyclohe ne xadie inte ne rconve rsion is Eve ore also ste ospe re cific, but follows theoppositerule of se of rotation, nse ste opposite s com d to thebutadie /cyclobute syste : pare ne ne m com Δ = dis dis Im e ml hυ = con con Robe B. Woodward rt Robe 1917-1979 Roald Hoffm ann b. 1937; NP 1981 Electronic Spectroscopy Electronic (Ultraviolet-Visible or UV) White(sun) light is com d of the pose White visiblespe ctrum Re e be mm r spe ctroscopy (C hapte 10): r (C Excite state d E Ground state ΔE = hυ = hc/ λ UV-Vis spe ctroscopy re quire m highe e rgy than NMR (kcals vs s uch r ne calorie doe not ne d e rnal “condition” (m t). Ele s), s e xte agne ctronic e xcitation f rombonding to antibonding le ls, particularly e for π syste s, be ve asy m cause occupie ounoccupie ΔE re d d lative sm ly all. occupie re For e ple look at a sim π bond, as in e ne ple the : For xam , No π bond le bond ft! I .e Light cause ., s cis-trans isom rization, e radical re radical actions, …. UV Spectrum of Ethene UV Quote as λmax d Quote Broad, be Broad, causeof rotational and vibrational state Ele s. ctronic spe ctroscopy is fast, no “ave raging” is A 171 nm 9 Wave ngth λ (give in nm units of 10--9 m not in fre ncy υ = c/ λ, as we le n nm , ; que Wave did in NMR, whe λ ~ 100 m to 1m re 100 m !) E (kcal m -1) = 28,600/ λ (nm ol ) UV spe ctroscopy be 200 nmre low quire vacuum be s , causeair absorbs. Norm (in atm ally osphe ) onescans 220-400 (UV), 400-800 nm(visible re ). This allows lowe e rgy transitions to bere r ne corde e 1,3-butadie : d, .g. ne This E Re lative ly Re low e rgy low ne λmax Pe he ak ights arere porte as ε : d Pe Extinction coe nt which Extinction fficie , which is absorbancenorm d by conce alize ntration: absorbance conce S houlde sh r, λmax = 222.5 nm (ε = 10,800) ε = A/ c Visible Absorption: Color Visible Ne wton Ne Light e rs theprismfromthetop right, and is nte re fracte by theglass. Theviole is be m than d t nt ore t heye llow and re so thecolors se d, parate . Absorption in Absorption thevisible t he 450 nmorange re 450 orange d 550 nmviole t 550 viole 650 nmblue gre n 650 blue e C of olor substance substance I n e nde π syste s m transitions are possible giving rise xte d m any , t o m com x and not re ore ple adily inte tablespe rpre ctra, but HOMO-LUMO gap ge sm r: Longe wave ngth ts alle st le absorption is indicativeof thee nt of conjugation, e xte .g., Gre r conjugation: ate S alle HOMO/LUMO gap mr CH 3 λ max = 271 nm C onjugate trie d ne λ max = 217 nm Unconjugate trie d ne Azule ne Azule ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online