This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ECE 421  Sum 2010 Notes Set 7: Filter Design by PoleZero Placement 1 INTRODUCTION In this set of Notes we consider a digital filter design method which is done entirely within the digital frequency zdomain. As such, it does not depend on an underlying analog form like an ODE or transfer function H s . This method is called digital filter design using polezero placement, and it extensively uses Ztransforms. You can review the Supplement Notes on ZTransforms (accessible from the course homepage) if you need to refresh your knowledge of Ztransforms. Here is a simple example we can use to motivate our digital filter design. Suppose we had an narrowband analog information signal which was being acquired in a wideband noisy analog environment. Suppose further that we want to store only the digital information signal (and not the noise) on a digital medium, like memory or disc. We basically have two approaches for removing the noise and then digitizing the information signal: We could try to build an analog filter which would pass the analog information signal and filter out the analog noise. Then we could sample the output of this analog filter, digitize this output, and then store it as a sequence of digital bytes or words. We could instead filter the noisy signal with a bandlimiting antialiasing filter, and then sample (digitize) the noisy bandlimited analog signal. Then we could pass these samples through a digital filter designed to separate the digital information compo nent from the noise. The output of this digital filter would then be stored as a sequence of digital words representing the filtered, less noisy information signal. This set of Notes examines aspects of the digital filtering approach above, in which we construct filters which operate directly on digital samples. In this introduction we will only examine a very basic approach for designing such digital filters. Digital Filtering is a very broad topic and we will see only an introductory approach. However, many concepts used in advanced filter designs will be demonstrated in this introduction. ECE 421  Sum 2010 Notes Set 7: Filter Design by PoleZero Placement 2 ADDITIVE NOISE To gain more understanding of digital filtering, lets consider in more detail the noisy ac quisition process described on the previous page. Let information signal be s t and let the additive noise be v t . This noise may be from physical processes unrelated to the signal, in which case we would like to filter out the noise before we store the information. An analog block diagram for the noise addition process is shown below: x(t) = s(t) + v(t) + s(t) Information Noise v(t) Mathematically we have the noisy acquired signal is given by the sum of the information and noise: x t = s t v t 1 At the acquistion sensor we only have access to x t ; that is, we can not tell which part of x t is the desired s t and which part is the noisy v t . In applying digital filtering to this noiseremoval problem, an AnalogtoDigital Converter will be sampling the noisy...
View
Full
Document
This note was uploaded on 09/07/2010 for the course ECE 421 taught by Professor Hallen during the Summer '08 term at N.C. State.
 Summer '08
 HALLEN
 Frequency, Signal Processing

Click to edit the document details