This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ECE 421  Sum 2010 Notes Set 8: Signal Quantization 1 INTRODUCTION In digital dignal processing we frequently use digital algorithms which compute values for discrete points in time, or for discrete points in space, like in digital imaging. The input to these algorithms is often the sampled data from AnalogtoDigital Converters. However, when we implement these signal processing algorithms on a DSPchip (which is a computer) or in digital hardware, then there are other effects become very important as well. Two of these effects are signal quantization and finiteprecision arithmetic effects. SIGNAL QUANTIZATION: Consider the case in which we want to implement an algorithm (like a filter) on a DSP chip. Like a computer, the DSP chip has a finite number of bits per word, both in instructions and data representation. The AnalogtoDigital Converter (ADC) trans forms the continuum of values possessed by the analog signal into a finite number of possible values. Each analog sample is now represented by a finite number of bits, like 16 bits or 32 bits, and this introduces noise. We will call this case signal quantization noise and it is the topic of this set of Notes. FINITEPRECISION EFFECTS: The DSP chip must implement the algorithm using computer structures such as ac cumulator, storage, bus transfers, etc. Consider the case of multiplying two 18bit words and storing the result in a 18bit memory. This multiplication requires 32bits for full accuracy, so we would need a 32bit memory. If we must store the multipli cation result in a 18bit memory this means we have to reduce the precision of the product back to 18bits, and this also introduces noise. This phenomena is studied in the next set of Notes These are the two quantization processes we will study in this course. We next need to quantify the concept of a digital word having a finite number of bits. ECE 421  Sum 2010 Notes Set 8: Signal Quantization 2 DIGITAL WORDS Many DSP chips may use 18bit words or 32bit words, or even longer words. However, for simplicity we will often use 3 or 4 bit words in our examples. This will make the concepts easier to understand but the principles will extend to any wordlength. SIGNMAGNITUDE FORMAT : Many digital devices use a 2scomplement number representation for actual computations. However, the signmagnitude is perhaps easier for us to understand when we are learning concepts. We will refer to algorithms implemented using bbit arithmetic, where b is the number of bits excluding the signbit. As an example of using this convention, the representation of two b = 4bit data words is shown below: SignMagnitude Decimal Integer 1 : 5000 8 1 1 1 : 4375 7 1 1 1 1 : 4375 7 The in the above is the binary point. It is not a part of the data representation, but is shown for our benefit. The sign bit is to the left of the binary point: a 0 in the sign bit implies positive and 1 implies negative. Note that the digital words above actually require 5implies positive and 1 implies negative....
View
Full
Document
 Summer '08
 HALLEN
 Algorithms, Signal Processing

Click to edit the document details