{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# L07 - REVIEW SOLODE y p(t)y q(t)y = g(t Existence and...

This preview shows pages 1–6. Sign up to view the full content.

REVIEW: SOLODE y 00 + p ( t ) y 0 + q ( t ) y = g ( t ) . Existence and Uniqueness Theorem; The Differential Operator L : f ( t ) 7→ f 00 ( t ) + p ( t ) f 0 ( t ) + q ( t ) f ( t ) . Fundamental Systems of Solutions.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
The Wronskian Definition: The Wronskian or Wronskian Determinant of two functions f 1 ( t ) , f 2 ( t ) is the determinant W [ f 1 , f 2 ]( t ) def = f 1 ( t ) f 2 ( t ) f 0 1 ( t ) f 0 2 ( t ) def = f 1 ( t ) f 0 2 ( t ) - f 2 ( t ) f 0 1 ( t ) . 2
Abel’s Theorem: The Wronskian W ( t ) def = W [ y 1 , y 2 ]( t ) of two solutions y 1 , y 2 of any HSOLODE y 00 ( t ) + p ( t ) y 0 ( t ) + q ( t ) y ( t ) = 0 ( HSOL ) satisfies W ( t ) = Ce - R p ( t ) dt . It therefore vanishes never or always. 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Proof: Write y 1 y 00 2 + p ( t ) y 1 y 0 2 + q ( t ) y 1 y 2 = 0 y 2 y 00 1 + p ( t ) y 2 y 0 1 + q ( t ) y 2 y 1 = 0 and subtract: ( y 1 y 00 2 - y 2 y 00 1 ) | {z } W 0 + p ( t ) ( y 1 y 0 2 - y 2 y 0 1 ) | {z } W = 0 implies W 0 + p ( t ) W = 0 . The general solu- tion of this FOLODE is W ( t ) = Ce - R p ( t ) dt . Theorem: Two solutions y 1 , y 2 of a HSOLODE y 00 ( t ) + p ( t ) y 0 ( t ) + q ( t ) y ( t ) = 0 ( HSOL ) form a fundamental system if and only if their Wronskian W [ y 1 , y 2 ]( t ) does not van- ish at some, and then at every, point t . 4
Proof of Sufficiency: Suppose then that W [ y 1 , y 2 ]( t 0 ) 6 = 0 . We have to show that ev- ery solution y of ( HSOL ) is a linear com- bination of y 1 , y 2 . Solve c 1 y 1 ( t 0 ) + c 2 y 2 ( t 0 ) = y ( t 0 ) c 1 y 0 1 ( t 0 ) + c 2 y 0 2 ( t 0 ) = y 0 ( t 0 ) and set y ( t ) def = c 1 y 1 (

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}