{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

PHY 303L-Exam1

# PHY 303L-Exam1 - midterm 01 VARELA CHRISTOPHER Due 11:00 pm...

This preview shows pages 1–2. Sign up to view the full content.

midterm 01 – VARELA, CHRISTOPHER – Due: Sep 20 2007, 11:00 pm 1 E & M - Basic Physical Concepts Electric force and electric field Electric force between 2 point charges: | F | = k | q 1 | | q 2 | r 2 k = 8 . 987551787 × 10 9 N m 2 /C 2 ǫ 0 = 1 4 π k = 8 . 854187817 × 10 12 C 2 /N m 2 q p = q e = 1 . 60217733 (49) × 10 19 C m p = 1 . 672623 (10) × 10 27 kg m e = 9 . 1093897 (54) × 10 31 kg Electric field: vector E = vector F q Point charge: | E | = k | Q | r 2 , vector E = vector E 1 + vector E 2 + · · · Field patterns: point charge, dipole, bardbl plates, rod, spheres, cylinders, . . . Charge distributions: Linear charge density: λ = Δ Q Δ x Area charge density: σ A = Δ Q Δ A Surface charge density: σ surf = Δ Q surf Δ A Volume charge density: ρ = Δ Q Δ V Electric flux and Gauss’ law Flux: ΔΦ = E Δ A = vector E · ˆ n Δ A Gauss law: Outgoing Flux from S, Φ S = Q enclosed ǫ 0 Steps: to obtain electric field –Inspect vector E pattern and construct S –Find Φ s = contintegraltext surface vector E · d vector A = Q encl ǫ 0 , solve for vector E Spherical: Φ s = 4 π r 2 E Cylindrical: Φ s = 2 π r ℓ E Pill box: Φ s = E Δ A , 1 side; = 2 E Δ A , 2 sides Conductor: vector E in = 0, E bardbl surf = 0, E surf = σ surf ǫ 0 Potential Potential energy: Δ U = q Δ V 1 eV 1 . 6 × 10 19 J Positive charge moves from high V to low V Point charge: V = k Q r V = V 1 + V 2 = . . . Energy of a charge-pair: U = k q 1 q 2 r 12 Potential difference: | Δ V | = | E Δ s bardbl | , Δ V = vector E · Δ vectors , V B V A = integraltext B A vector E · dvectors E = dV dr , E x = Δ V Δ x vextendsingle vextendsingle vextendsingle fix y,z = ∂V ∂x , etc. Capacitances Q = C V Series: V = Q C eq = Q C 1 + Q C 2 + Q C 3 + · · · , Q = Q i Parallel: Q = C eq V = C 1 V + C 2 V + · · · , V = V i Parallel plate-capacitor: C = Q V = Q E d = ǫ 0 A d Energy: U = integraltext Q 0 V dq = 1 2 Q 2 C , u = 1 2 ǫ 0 E 2 Dielectrics: C = κC 0 , U κ = 1 2 κ Q 2 C 0 , u κ = 1 2 ǫ 0 κ E 2 κ Spherical capacitor: V = Q 4 π ǫ 0 r 1 Q 4 π ǫ 0 r 2 Potential energy: U = vector p · vector E Current and resistance Current: I = dQ dt = n q v d A Ohm’s law: V = I R , E = ρJ E = V , J = I A , R = ρℓ A Power: P = I V = V 2 R = I 2 R Thermal coefficient of ρ : α = Δ ρ ρ 0 Δ T Motion of free electrons in an ideal conductor: a τ = v d q E m τ = J nq ρ = m nq 2 τ Direct current circuits V = I R Series: V = I R eq = I R 1 + I R 2 + I R 3 + · · · , I = I i Parallel: I = V R eq = V R 1 + V R 2 + V R 3 + · · · , V = V i Steps: in application of Kirchhoff’s Rules –Label currents: i 1 , i 2 , i 3 , . . . –Node equations: i in = i out –Loop equations: ( ±E ) + ( iR )=0” –Natural: “+” for loop-arrow entering terminal ” for loop-arrow-parallel to current flow RC circuit: if dy dt + 1 RC y = 0, y = y 0 exp( t RC ) Charging: E − V c R i = 0, 1 c dq dt + R di dt = i c + R di dt = 0 Discharge: 0 = V c R i = q c + R dq dt , i c + R di dt = 0 Magnetic field and magnetic force μ 0 = 4 π × 10 7 T m / A Wire: B = μ 0 i 2 π r Axis of loop: B = μ 0 a 2 i 2( a 2 + x 2 ) 3 / 2 Magnetic force: vector F M = i vector × vector B q vectorv × vector B Loop-magnet ID: vector τ = i vector A × vector B , vectorμ = i A ˆ n Circular motion: F = mv 2 r = q v B , T = 1 f = 2 π r v

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}