This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: t=1:200 N(t)=ctr; i=rand(1); if i<=.35 ctr=ctr+1; else if i>.35 & i<=.45 ctr=ctr; else ctr=ctr1; end N(t)=ctr; end end A(k) = N(5); B(k) = N(10); C(k) = N(20); D(k) = N(50); E(k) = N(75); F(k) = N(100); G(k) = N(200); end hist(A,100) title( 'N(5)' ) figure hist(B,100) title( 'N(10)' ) figure hist(C,100) title( 'N(20)' ) figure hist(D,100) title( 'N(50)' ) figure hist(E,100) title( 'N(75)' ) figure hist(F,100) title( 'N(100)' ) figure hist(G,100) title( 'N(200)' ) for i=1:10000 R(i) = geornd(1(.35/.55)); end hist(R,50) title('Geometric RV’)...
View
Full Document
 Spring '08
 Lim,A
 Probability distribution, Probability theory, probability density function, Markov chain, Eddie Lo, figure hist

Click to edit the document details