hw_00_sol - Problem Set 0 Spring 2010 Due Thursday Jan 28...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Problem Set 0 Spring 2010 Due: Thursday Jan 28, 2:00pm, in class before the lecture. Please follow the homework format guidelines posted on the class web page: http://www.cs.uiuc.edu/class/sp10/cs373/ 1. [ Category : Notation, Points : 20] Answer each of the following my marking each with true , false , or wrong nota- tion . Follow the notations in Sipser . { ... } is used to represent sets and not multisets or anything else. D1) { a,b,c } ∩ { d,e } = {} D2) { a,b,c } ∩ { d,e } = { ∅ } D3) { a,b,c } ∪ { d,a,e } = { a,b,c,d,a,e } D4) { a,b,c } ∪ { d,a,e } = { a,b,c,d,e } D5) { a,b,c } \ { a,d } = { b,c } D6) ∅ ∈ { ∅ ,a,b,c } D7) ∅ ⊆ { ∅ ,a,b,c } D8) ∅ ∈ ∅ D9) a ⊆ { ∅ ,a,b,c } D10) { a,c } + { c,b } = { a,b,c } D11) { a,b } - { b } = { a } D12) { a,a } = { a } D13) {{ a } , { a }} = { a,a } D14) a ∈ { a, { a } , {{ a }}} D15) { a } ∈ { a, { a } , {{ a }}} D16) {{{ a }}} ⊆ { a, { a } , {{ a }}} D17) { ∅ } = {{}} D18) { a,b } × { c,d } = { ( a,c ) , ( b,d ) } D19) { a,b } × { c,d } = { c,d } × { a,b } D20) |{ a,b } × { a,b }| = 3 Solution: D1) { a,b,c } ∩ { d,e } = {} true D2) { a,b,c } ∩ { d,e } = { ∅ } false 1 D3) { a,b,c } ∪ { d,a,e } = { a,b,c,d,a,e } true D4) { a,b,c } ∪ { d,a,e } = { a,b,c,d,e } true D5) { a,b,c } \ { a,d } = { b,c } true D6) ∅ ∈ { ∅ ,a,b,c } true D7) ∅ ⊆ { ∅ ,a,b,c } true D8) ∅ ∈ ∅ false D9) a ⊆ { ∅ ,a,b,c } wrong notation D10) { a,c } + { c,b } = { a,b,c } wrong notation D11) { a,b } - { b } = { a } wrong notation (but we will also accept "true") D12) { a,a } = { a } true D13) {{ a } , { a }} = { a,a } false D14) a ∈ { a, { a } , {{ a }}} true D15) { a } ∈ { a, { a } , {{ a }}} true D16) {{{ a }}} ⊆ { a, { a } , {{ a }}} true D17) { ∅ } = {{}} true D18) { a,b } × { c,d } = { ( a,c ) , ( b,d ) } false D19) { a,b } × { c,d } = { c,d } × { a,b } false D20) |{ a,b } × { a,b }| = 3 false 2. [ Category : Proof, Points : 16] Professor Moriarty claims that he has a way of describing every real number between 0 and 1 using an English sentence (of nite length), i.e. for every real number r , there is an English sentence s that precisely describes r . Prove that Professor Moriarty is wrong. Note: Assume that a real number between 0 and 1 is of the form .a 1 a 2 a 3 ... , where each a i ∈ { , 1 ,... 9 } , i.e. is an in nite set of decimal points. This is not quite true, as . 09999999 ... is actually the same as . 10000 ... , but ignore this subtlely for this question....
View Full Document

This note was uploaded on 09/19/2010 for the course CS 373 taught by Professor Viswanathan,m during the Spring '08 term at University of Illinois, Urbana Champaign.

Page1 / 6

hw_00_sol - Problem Set 0 Spring 2010 Due Thursday Jan 28...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online