This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: (a) Rewrite the radial wavefunction as R(r) = u(r)/r, and by substituting into the equation above, obtain a differential equation for u. What is the advantage of doing this transformation? (b) The infinite spherical well is give by the potential V(r) = 0 for r a, V(r) = for r &gt; a. Draw the effective potential appropriate for the Schrodinger equation describing the function u for the quantum values l = 0, l = 1 and l =2. For the values l = 0 and l = 1, draw the corresponding eigenstate wavefunctions. How are these wavefunctions related to the quantum number n for the radial wavefunction? (c) Find the eigenstates and eigenenergies associated with u for l = 0 (the familiar case). Keep in mind that the actual wavefunction is R = u/r and that it should not blow up at r = 0. (The solutions for general l are known as Bessel functions See Griffiths 4.1.3)...
View
Full
Document
 Fall '08
 Staff
 Quantum Physics

Click to edit the document details