Lecture 01 - Introduction to Modeling short_1

Lecture 01 - Introduction to Modeling short_1 - Lecture 1...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
1 Lecture 1 Introduction to Decision Analysis and Decision Support Systems DADSS
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 Course Overview Management Science Operations Research Decision Analysis Other Subject Areas: Economics/Finance Simulation Optimization Probability/Statistics Public Policy Computer Science/IT/IS
Background image of page 2
3 The special grading scheme About that minus infinity… Can I really get a minus infinity on a  midterm? If I get a minus infinity on a midterm, do I  flunk the course? Can I do a special project at the end of the  semester to pull up my grade?
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4 Simple Quantitative Problems Ending sequences of a coin flip  HHT or THH Two brothers Let’s make a deal Average fuel economy for a two-car family Suburban (10 mpg) and Prius (50 mpg) Dried tomatoes Two random cuts of a line segment, probability  that a triangle can be formed
Background image of page 4
5 What could go wrong? Seat belts in school buses LED traffic lights Hybrid requirement for state-owned vehicles Double-hull oil tankers Wind power Tree rings and historical temperature measures  Mandatory sentencing for major crimes (“three  strikes”) Sin taxes to raise revenues for good purposes Safety training Redundant fuel tanks for the space shuttle
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6 Introduction to Modeling What is a model? A model is a selective abstraction  of reality A model is a symbolic representation of  reality that “assumes away” less important  details in order to highlight the critical ones Not Enough Detail Too Much Detail
Background image of page 6
7 Selective Abstraction Models that are too simple aren’t useful Insufficient information Multiple interpretations Average data Models that are too detailed aren’t useful Too complex Unable to extract major patterns/trends
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8 Some Thoughts on Abstraction Everything should be made as simple as  possible, but not simpler (Albert Einstein) The purpose of abstraction is not to be vague, 
Background image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/20/2010 for the course SDS 88223 taught by Professor Fischbeck during the Spring '10 term at Carnegie Mellon.

Page1 / 21

Lecture 01 - Introduction to Modeling short_1 - Lecture 1...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online