Lecture 13 - Biases

Lecture 13 - Biases - Decision Analysis Biases in Judgment...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
1 Decision Analysis: Biases in Judgment
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 Some stuff up front Review from last class Moved away from Expected Value to  Expected Utility Discussed that most people are  risk averse  when  it comes to gambles involving gains Today, we look descriptively at people’s  choices
Background image of page 2
Rate of no method use Rate of withdrawal/ periodic abstinence Failure is not suspected Rate of hormonal contraception use Rate of method failure Rate of STIs Rate of condom use Rate of abstinence in population Retain Rx Plan B (Status Quo) Approve OTC Plan B C D D D Rate of suspected failures D Rate of unintended Plan B users Rate of Plan B use w/in 24 hrs Rate of adverse events Rate of intended Plan B users Rate of adv. provision Plan B Rate of Plan B use w/in 24-120 hrs Rate intended users who cannot access EC Rate of unintended pregnancy Rate of adverse events Rate of unintended pregnancy Rate of adverse events Rate of unintended pregnancy Rate of unintended pregnancy Rate of unintended pregnancy Rate of unintended pregnancy C Risk Profile Risk Profile We can represent complex decision using decision trees. Example: FDA’s decision whether to approve Over-the-counter Emergency Contraception Note : Dashed areas C and D denote areas of the tree that are similar in structure (but not necessarily in their values).
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4 No method use Withdrawal/ periodic abstinence Does not suspect failure Hormonal contraception use Method fails Risk of STDs Condom Abstinence D D Suspect method failure D Method does not fails Decision about EC Becomes pregnant Does not become pregnant Risk Profile D Another Perspective:  The Individual Decision Normative Assessment:   Hormonal cont. (e.g. birth control) is best if there is little or no risk of  STI’s  Why do adolescents deviate from these normative claims?
Background image of page 4
5 Behavioral decision research What is the optimal decision? Normative : Decision Analysis What do we need to understand in order to make good  decisions– Quality of information.  How do people actually make decisions? Descriptive : Psychology Limits on the quality of information  or  limits on the quality of  decision making capabilities.   How can people be helped to make better decisions (by  overcoming these biases)? Prescriptive : Public Policy Risk communication or limit choices 
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Decision Evaluation I bought a lottery ticket and won $10,000 Was buying the ticket a good decision? Why or Why Not?
Background image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/20/2010 for the course SDS 88223 taught by Professor Fischbeck during the Spring '10 term at Carnegie Mellon.

Page1 / 38

Lecture 13 - Biases - Decision Analysis Biases in Judgment...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online