Lim x c x 0 b lim x b b 19 a x lim c x

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: œ œ (x c 1) x(x b #) œ_ œ_ œ 0 (1)(3) (b) tÄ! lim c b 20. (a) x Ä c# (b) x Ä c# lim œ0 <2 c < " t # # # x c " x œ " # " c ˆ c1 ‰ œ x c1 2x b 4 œ_ $Î" (c) lim # x Ä È2 $ $Î# # x c " x œ 2 # c # " c c (b) xÄ! lim # x # c " x œ 0 b lim xÄ! b b 19. (a) xÄ! lim # c x # (d) x Ä c" lim x x c1 œ x Ä c" lim x (xb1)(xc1) œ c_ negative Š negative†negative ‹ c " x œ 0 b lim xÄ! " cx " cx œ c_ œ_ " Š negative ‹ " Š positive ‹ œ 2c"Î$ c 2c"Î$ œ 0 3 # Š positive ‹ positive x c1 2x b 4 œ c_ positive Š negative ‹ negative Š negative††negative ‹ positive 3 t ‘œ_ b 7‘ œ c_ 2 (x c 1) “œ_ “œ_ “ œ c_ “ œ c_ 94 27. y œ Chapter 2 Limits and Continuity " xc1 28. y œ " xb1 29. y œ " #x b 4 30. y œ c3 xc3 31. y œ xb3 xb2 œ1b " xb# 32. y œ 2x xb1 œ#c 2 xb1 # # 33. y œ x xc" œxb1b " xc" 34. y œ x b" xc1 œxb&quo...
View Full Document

This note was uploaded on 09/20/2010 for the course MATHEMATIC 09991051 taught by Professor Dr.maenshadeed during the Fall '10 term at Norwegian Univ. of Science & Technology.

Ask a homework question - tutors are online