# ISM_T11_C05_B - Section 5.3 The Definite Integral 20. The...

This preview shows pages 1–5. Sign up to view the full content.

Section 5.3 The Definite Integral 305 20. The area of the triangle is A bh (2)(1) 1 œœ œ "" ## 1 x dx 1 square unit Ê±œ ' ±" " ab kk 21. The area of the triangular peak is A bh (2)(1) 1. œ The area of the rectangular base is S w (2)(1) 2. œj œ œ Then the total area is 3 2 3 square units ' ±" " 22. y 1 1 x y 1 1 x œ² ± Ê ±œ ± ÈÈ (y 1) 1 x x (y 1) 1, a circle with ±Ê² ±œ # # center ( ) and radius of 1 y 1 1 x is the !ß" Ê œ ² ± È # upper semicircle. The area of this semicircle is A r (1) . The area of the rectangular base œ # 11 1 is A w (2)(1) 2. Then the total area is 2 œ ² 1 # 1 1 x dx 2 square units Ê² ± œ ² ' ±" " # # Š‹ È 1 23. dx (b)( ) 24. 4x dx b(4b) 2b '' ! ! " " # # # b b xb b 22 4 œ œ #

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
306 Chapter 5 Integration 25. 2s ds b(2b) a(2a) b a 26. 3t dt b(3b) a(3a) b a '' a a b b 3 œ±œ ± ± "" ## ### ab 27. x dx 28. x dx 3 " !Þ& # #Þ& # " È Š‹ È œ ± œ 2 (1) (2.5) (0.5) # # 29. d 30. r dr 24 1 1 1 11 # &# # # # )) œ± œ œ ± œ (2 ) 3 52 2 # È È Š‹ Š‹ ÈÈ 31. x dx 32. s ds 0.009 " ! ( !Þ\$ # # È È \$ \$ \$ \$ œœ œ œ 7 33 3 7 (0.3) 33. t dt 34. d ! ! "Î# Î# # # " # ˆ‰ " # # \$ \$ \$ 32 4 3 4 1 1 1 35. x dx 36. x dx a a a a a (2a) a3 a a 3a # \$ # # # œ œ ± œ # # # È È 37. 38. 9b ! ! # #\$ \$ È È \$ \$ \$ \$ b b b 3 b (3b) œ œ 39. 7 dx 7(1 3) 14 40. 2 dx 2 ( ) 2 2 \$ ! " ± œ ± œ ± # ± ! œ ± 2 È 41. 5x dx 5 x dx 5 10 42. dx x dx 1 ' ' !! \$ \$ && 22 20 x 53 1 6 88 8 1 6 œ œ ±œ œ œ œ ’“ 43. (2t 3) dt 2 t dt 3 dt 2 3(2 0) 4 6 2 ' !" ! " ± œ ± œ ± ± ± œ±œ± 44. t 2 dt t dt 2 dt 2 2 0 1 2 1 ' ! È È 2 2 0 È È –— ± œ ± œ ± ± ± œ±œ± # # 45. 1 dz 1 dz dz 1 dz z dz 1[1 2] ' ' ' # # " " " # # # # # # # " ²œ ² œ ± œ ± ±± œ ± " ± zz 2 1 3 7 4 46. (2z 3) dz 2z dz 3 dz 2 z dz 3 dz 2 3[0 3] 9 9 0 ' ' ' \$\$ \$ ! \$ ! \$ ! ± œ ± ± œ ± ± ± ± œ ± ² œ 30 47. 3u du 3 u du 3 3 3 3 7 ''' ' ""! ! " # # " œ œ ± œ ±±± œ œ ”• 0 21 7 3
Section 5.3 The Definite Integral 307 48. 24u du 24 u du 24 24 24 7 '' ' ' "Î# "Î# ! ! " " " "Î# ### # œœ± œ ± œ œ –— ”• ’“ 1 33 3 \$ " # \$ ˆ‰ 7 8 49. 3x x 5 dx 3 x dx x dx 5 dx 3 5[2 0] (8 2) 10 0 ' ' !! ! ! ## # # ab ² ± œ ² ± œ ±²±±± œ ² ± œ 20 \$\$ 50. 3x x 3x x 3 x dx 5 dx ' ' ' "! ! ! ! !" " " " ²± œ± ² ± 3 5(1 0) 5 œ ± ±²±±±œ ± ± œ Š‹ 10 3 7 # # 51. Let x and let x 0, x x, ?? œœ œ œ b0 b nn ± x 2 x x (n 1) x, x n x b. # œß á ßœ ± œ œ ? " Let the c 's be the right end-points of the subintervals k c x , c x , and so on. The rectangles Êœ œ "" defined have areas: f(c ) x f( x) x 3( x) x 3( x) " #\$ œ f ( c )xf ( 2x )x3 ( ( 2 ) (x ) # \$ ? ? ? ? œ f ( c ( 3x ( ( 3 ) ) \$ \$ ? ? ? ? œ ã f ( c ( nx ( ( n ) ) n ? ? ? ? œ \$ Then S f(c ) x 3k ( x) nk k1 oeoe 3( x) k 3 ? \$# ²² ! Š n oe b n6 n ( n1 ) ( 2 ) \$ \$ 2 3x dx lim 2 b . œ ² ²Ê œ ² ²œ b3 b \$ \$ # # ! ' n Ä_ 52. Let x and let x 0, x x, œ œ b ± x 2 x x (n 1) x, x n x b. # á ± œ œ ? " Let the c 's be the right end-points of the subintervals k c x , c x , and so on. The rectangles œ defined have areas: f ( c ) x f ) x ) " ? 1 ? ? 1 ? œ f(c ) x f(2 x) x (2 x) x (2) ( x) # \$ ? 1 ? ? 1 ? œ f(c ) x f(3 x) x (3 x) x (3) ( x) \$ \$ ? 1 ? ? 1 ? œ ã f(c ) x f(n x) x (n x) x (n) ( x) n ? 1 ? ? 1 ? œ \$ Then S f(c ) x k ( x) ?1 ? ) k 1? 1 ! Š n oe b n ( ) ( 2 ) \$ \$ 2 2 . œ ² œ ² 11 1 b 6n n n 3 b \$ # # ! # ' 1 n

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
308 Chapter 5 Integration 53. Let x and let x 0, x x, ?? œœ œ œ b0 b nn ± !" x 2 x x (n 1) x, x n x b.
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 09/20/2010 for the course MATHEMATIC 09991051 taught by Professor Dr.maenshadeed during the Fall '10 term at Norwegian Univ. of Science & Technology.

### Page1 / 18

ISM_T11_C05_B - Section 5.3 The Definite Integral 20. The...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online