solmidterm312 - SOLUTIONS TO THE MIDTERM FOR MAT 312...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SOLUTIONS TO THE MIDTERM FOR MAT 312 Instructions: Please do each of the following 4 problems in the spaces provided. Show some work or give an explanation for each of your answers. (There are two extra sheets of paper at the back of this exam.) In the spaces directly below please print your name and your ID number. Name: ID: 1 2 SOLUTIONS TO THE MIDTERM FOR MAT 312 (1) Let C denote a code containing just the following code words: c 1 =0101010, c 2 =1111111, c 3 =1010101, c 4 =0000000, c 5 =1100001. (a) (worth 6 points) Is C a group code? Solution: The sum of the code words c 1 + c 5 is equal to 1001011, which is not a code word. Thus C is not a group code. (b) (worth 7 points) Compute d for this code. Solution: d is equal to the minimum of all the Hamming dis- tances H ( c i , c j ) between different code words. Note that H ( c 1 , c 2 ) = 4, H ( c 1 , c 3 ) = 7, H ( c 1 , c 4 ) = 3, H ( c 1 c 5 ) = 4, H ( c 2 , c 3 ) = 3, H ( c 2 , c 4 ) = 7, H ( c 2 , c 5 ) = 4, H ( c 3 , c 4 ) = 4, H ( c 3 , c 5 ) = 3, H ( c 4 , c 5 ) = 3. Thus d = 3. Remark: Many of you computed d by computing the minimal weight of the non-zero code words, and got the correct answer! I took off points for this because usually this method of computing d only works if...
View Full Document

Page1 / 5

solmidterm312 - SOLUTIONS TO THE MIDTERM FOR MAT 312...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online