Solution of HW4[1]

Solution of HW4[1] - PYOL‘QM i l __ u}+\_“T—1 fl r 2...

Info iconThis preview shows pages 1–19. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 18
Background image of page 19
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: PYOL‘QM i l __ u}+\_“T—1 fl r 2 A“ cmJr : ’c U‘J—H “KI-I v uI+1”9-"‘i +uf~r Ur, .-. “3M '2uf+uI—t M 2 {Mk 13“; m2 CZ. RKWB-Q: * n U = u -i- NE‘ [L (0H “n+6,- u*)+751 HUGD He . {— ‘ m z w qr ryc [L w u MQUHJHQHN’GHfliHUHJ n+1 {He 599‘ + « ' u :u MEL-[L big” +63 m“ UT 2% Hm”) +1 54w? L :- 35:— -— < bani 1: b ““" F’ .. Hz—C H .at— - “‘1 \A :zI_,6IA‘tLj [1+ qQAfL+filAfH3xuh - ' ~1 62 M L] {LIA-NZ 13+ng 0% #9,.[1—51 :3ij {in mathQAé-H] “+ a x UK" 69 n-H *1 LA :5 * a - [I 5; M Q X § [I W3 AXE m’erg M 14ij ~52 ML)“: . m1 x [ang (51—wa1 mm) L: “gauge 1.) L 1+oglA‘tLT’b‘2éb'E H)~r zatwj+ ' - *1 ~+721>1EH [Irgj atL] [Ifd1bfi-Lfizjl 5th”) Bxum C9 \k m jam _ _ v‘. Iqu! e IF a n e T W H 0 “(I Am J D *' 0 ® “I I U u e —\ Mom: C5" U1“ 0 3 Mi rim.“ km 0 { ‘Ax ' * 1L, ° 9 % U/. h. LLT+IH Fr While 6 l e e :- NJ 1 Sin I 22351 bx ’ 2.; £571 .. l . I.“ h o “(:D'K ? LI. fl 7. “La “I”‘ I \ 6mg 9; max .< 74. M :— 2: (Q __ 2+€ I Aime- D'P‘z : r1 2%}; :- (gfitiAO'M)-1 £3742 ( ‘ J a a “I paw: H _Ci£ timmfikhfik)+l/.._.ZZ [L9£(kfixj%_1j : [limku +U’NKKR 0H: m" 43% 6 2 KI Z— "Srn (Kink) KR :2 EM(KMJ__1J “jun-H 1 { }+0(’3 \TN “(3; H.353 QNxEK O- : .:: --—-—--—'-“'-—-— «—-——-—-——----——-——-—---—-—-w~———m—-—-- (be—x 5-4333 V‘NKKI‘Q \ —a82 (v - a' x (—ka g E:(1+D<g_ WxKK 14°62 LN" Kl)(1+ok1-V_NXKR L T .... F} # Hzmm i-fliq—NH‘R i’yz-XCNNKI‘ L + —-—~....__.._._._______ (1+W1WXKR 'H ‘61"CNKkI) 1- '51VNTP‘R ® P‘Me See 1%: q-Héqdmef 7Qéazr28 {Ly-+ny fizz/r6 1 1 1° ~CN 1 3 “Q ' @ vwzorg 6‘: [ink—CA} xSw; cqu]+ +5 (W 5m (km) XSthm) :5 "*7 [5 :5-2' (52 :__— S$>CWZ ‘ -—n :r—h 1 R 4r ‘2; J— SmUmm) MN “‘3 'stov—M-érQKw3é9 became/S :62wa In film/V35 LAIotJMzfi A C , “fl I E.” M _ F“ m, 5;, £53K _ _. {3+ CNWVB (3’)“- Squ‘v'a/i oiéwefiémmf 0 may . ° -9 0 ~ , , t a no a way: “J’ F T mt ilj I 6) agilkf u" " ’ . . .-., “##2## : .3. - LN ZCQQLKbXJ-i) tO‘NXQXEégg ( Rims) 43 -— Exam/x SJACMM} . ‘ 3 "v-1 & 5:2}:- ..*:)( 4 RR QC Mcfb ) 0% f '4 '1] ' “I :WF— W x5”! (kfi%)'+c'NCQ33(Kb%)~{ Kr ’Empor‘d fi/S'cz'etizwéw: 44; \Ar-H'VQJ vx wlxoooow—w) ‘- o-—1:LooO~Ho \ Wignxcm o 041 a o w —- 0 I. - n [.0]\i0] u] O~ o~11 6 O : O-—“CJ (3"13. 0 l .0 ‘ - 0 O 0 :1 1 ‘w 0 "‘"O 00‘3. 1L 6‘P‘WM@ \TNKRR', AJ/‘E- game 0&3 L96va CA) «I :~ 3,}, gamma» {Toma kw ~13 .Q‘Q‘ at M Due/VS “gey- gmw if) 6 $9 «152/! Lscrefim‘w: * *- ° - {K EMA Ud- uj ; “a” ~“LT——\ FELL. [L-ue 5% E1~ Cs-SEKESK)+|:§3:3LKNL)J .X _. .5: € —~-cN[l——C98 LKBM] «— fo‘xsi‘ncxmx) +VN xif‘ég (Jam) ,1] 3:! Ru sec/U W‘T‘q‘r'i £39k m “‘1 1 0 0 =- ~ ~ ——— O “1 fl____ '1. :L o O a P. A 0 [ 5751x4431“: CNK 0 El 20 in F‘ " *“——0 {I 0* 0 *1 2L 0 o 0 ‘--O o ‘1 1L. 0 ’9 _~fio o O *1 :L Hm Efu +CbMI/L: (3 3w} +6. “ii? :0 o C 13w E31“ 1- “(fix . m U5: (mikbfiw34 +FS;n{kbm} L hm hm m-rfim IQ e41 ‘0 cat/{‘6‘ ‘24?- K 96’ Q) N I, “.9 "P r? M 8 W O 4% «in W 1 \ K \o e ilrx ’1 Q 3 r q} is .7 (x) k 3 . n: h {LA I' 5 (a K. £4 “(7 Q. I’m/i L c] S . “f @ 2 A 2 ® '0 Box v 3“ fii:~lexka—bfi3ka U\ c_______._... : ,._..--—- bt+ 5“ 373‘ 0"" C kip”! r“ CNN: 5 203%Dtmzfli AWL C N '__..._—._. — - Qa—FM— 5' FD f: MA N 3325-92 MAW‘W‘M {S S‘fa/MLQ bust" n°’\~ Te,ij acc’xbkmd—e', “bk :0) r; mL-tzlm) flFgr (ff—“OF a“; Nzaaé @Acgva Sokwbgn is Sit-«Joie Met ac. Lurafifl H pa}. GPO?- Mcl M:’?l=> wgowfim is sub]? bud W CLY' 0”;5C03}@ £n'fr001uC-‘4i 1;} “‘2 5’59“;th CLPwScmzfialfl-ghb“ (“Rhoda 4&2 Nuka oi um: be TQMQOQ wad/\flim-e H'- For‘ F 7 ‘ “* ‘E‘BK “any (US$156, If“ Gan—bang bang S‘facble, mérfiomfl WS'Ce‘gi-Cy 1’5 finder azmi 44% reonva 043 U 75 .———Tc\/C Psuoléspggw muaaoq @013 fie MOS? “C I x C73 Q's/wk STE/He ébfugb‘em- J+TS \T‘e/rj «mm-at wxw _ Alf/'32 0/1401 Wm mgre NKQA N36155- F’foaSoLuhém 0:? QM: Weqthoofl VON-94 Nzflfibk 4421a M031:- re/Uasble. We C1144 Ma +0u‘s M€~+émd QECMEW bewmoflay we PEN}: zip/Fa» £97 N332, less CCCCUUr‘aJ’P-e bout GLLSQ lea/SS“ Con/1P uchhgna/LJ upw1tw. _ _ ________ _________ _ ... .. ... ____ . . _,__,__.——.—-—.__ _. __ _ __ _ .____._.—— .._M ....._-.._ ..v._........—- C9 flange: See Aka Wehfufi figure/s. "" For CFDP9+R€L SQM‘DAS ‘9qu 4°", Levi—07 W {Ii—TS COS/.1? \) Smoo‘f'fiej fie 39644176,, 1119 TDTPQ'l‘aq Cam/$.6- Epor PPDF W N :32, 4&2 9912635717 1320-1 Wm'aemea 4&2. (MG yin/{J 072C93ng £3:ch __\.:1m "—5 - 2N :- 0.09.9 and 49% o ‘ S Ma“ Gage-Sh‘fi— becamfi 3-1240“? Fr51116:“ 0* Cockr (2.1"?— is ‘ Mud/I ngjww 2, +km'per +61%. ‘8}0CLLT7‘ Same 4/an puH-e accuraje. "IQ/Le '011 y 3/ +313 I'nS‘fa/bz‘tiy 9994112 \‘3‘7‘560 WEN” @F 0173+“ 55W“ Ts Sfiloieffiue W43qu \‘TIOS Coffiy @mbwm "be SmeaaW) 4&6: S'tnlxdbloh were WM NM “PEAR figmfiem {44% C}: D F: ——u ‘ 32 m4 . m [050.4 PE» I’MEA’LAGK_ g{0~a& $2 .- gokuuh‘om. Pr‘o a... i 1 “33:1 “'3 “5-1” M} 43%qu Ilka” £3143 .132: (r Y 8 Q J ?*U :7 $1.3“; 23m 2"“ 2:10 311. é. '1 3 u m m | “I zzwfil“;gmmf (HM rug-6%“ +u3‘tl6m‘f' ¥Qo “*0”; m?) | 2 g Wit/k 32a”)? US}: “Ray‘s 19.0 J 3‘35- 551 v. a f f 2 & R “fig—MKst 3LijAM+ Mfg—«run? law‘s um 81am? J M J 2 _ f 5 + J tux? W 1"" I? no ' W3 17 +0! 32L ; f I 92.0 +Omr5°< J 5 f A; AV '2 m 3 “H1 ufiujbkfi‘wwflfliu‘” m&“—+u§;5fi 511:;5‘3 EL 6 a “fin-- _ Marta/k WMS E1”? ScWQ QM: " m ; 3‘ 63 @ 0w”; M )fla q L3 fé*8‘)+9—(E§m+§(4);§ @ "SI? 0(ufbm*)-fi5_ giar 1L+ 2:15. ‘31 IQO 2490 300 :f’lorx :equ IbeS‘l C; @ x 3 o< ®@em&@? Q 3 a 1‘? b=§3~oz..’}__ \‘3 g 4 3 C:.-—-—_._..¢x '0 4:“) 0k :0 1,3725 .25 Dfujgrbflé) b€®¥“e-r3 ELMO 49‘ @SQ‘AEME hemmeg 8 “9- X q 1 30129 c2181; 31? 6_ WW“: flfffih-fl' *-- u-Hs _ E {3’00 2 52610 ‘f‘aazo 6 22520 XI “ + E 3 1 “mt £ 4Fth M :(35- ---~ q- D%+O(u~¥bm5 I .105 fir-0 " 7 I J 3 ix.: 5’ grYorLd"E-) H®(L{j A“) 9—- .. 1K1} . iin-nxb'x. «1:41 5g ujiwzuye { 9 ~ . 9371‘vawa u]; .3 EkMXL/Lj% mgr" 5; lka a]. a {Ram ~1Kbx a Q WHEN: ~- “(Q'K ‘ x —— -—-— E3 ._ . ohkm[e +2, +b<m amt e j+ b {14213er JKQAK C 9K3 o ,_)r b e F— e .1— __IH_H [6‘ BK “'fkgan Oak 2 " 2;! ° " Lb ° ° Mx C9£LKJML)+IKM 3K StMKKAAJ+QbK{SM(QKM)+ C x . —-—-——[S\h(3k& 52mm. “)3 CkS\.v\(.Kb%) +q3— 3;!!! (bum) avg-2 SMKSKAMJ W Exclang mg+1 P\£a..3e_ See fi—Qva mfiqcfixqi £1b3um¢3 ~—-._.._____._ A” v? S‘ch/AAC/S “We: glthkflr efsz WIS/Q We S‘cjkaM-Q Wee-r oi 30“!” hm?) £01359?“ ragokwfiw; Shqwfi Stability region using centered finite difference formulae, for different values of VN: C.ED.F. with WV: 0 C.F.D.E with WV=J C.F.D.E with WV: 10 0.17.013 with W220 Stability region using forward finite difference formulae for de convective terms, for different values of VN: EEDJZ with WV: 0 EEDJ'. with WV=5 kAx F.F.D.F. with WV: 10 EEDJ". with WV=20 kAx kAx Stability region using backward finite difference formulae for de convective terms, for difl'erent values of VN: B.F.D.F. with WV: 0 B.ED.FI with WV=5 81710.17. with WV: 10 B.F.D.F. with WV=20 Solutions of the problem, for v = 0 and N = 32: CFDFuu‘fl: c=Ir =0N=32 -02 -04 ‘06 -08 “on MFwitlz031r30N=32 MHIHHH H H” l Psudospectral method with c = 1 r = 0N = 32 Solutions of the problem, for v = 0 and N = 256: CMFwithc=1r=0N=256 “om WFwithcrlv=0N=256 BFDFwithcl'Jr =0N=256 Solutions of the problem, for v = 0.1 and N = 32: C'FDFuviIhc=lv=0.1N=32 FTDFwithc=Ir=a1N=32 BFDFuith 0:17 =0JN=32 Solutions of the problem, for v = 0.1 and N = 256: CFDFwithCZJV 20.11V2256 FFDFwithc:lv=0.1N=256 BFDFuu'th 0 =1 3’ I 0.1N2255 Modified wavenumber: Modified Wauermmber Modified Wauenumber 14 12 03 k /k I 06 ...
View Full Document

Page1 / 19

Solution of HW4[1] - PYOL‘QM i l __ u}+\_“T—1 fl r 2...

This preview shows document pages 1 - 19. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online