Elementary Linear Algebra( K.R. Matthews)

Elementary Linear Algebra( K.R. Matthews) - ELEMENTARY...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 1998 Comments to the author at krm@maths.uq.edu.au Contents 1 LINEAR EQUATIONS 1 1.1 Introduction to linear equations . . . . . . . . . . . . . . . . . 1 1.2 Solving linear equations . . . . . . . . . . . . . . . . . . . . . 6 1.3 The GaussJordan algorithm . . . . . . . . . . . . . . . . . . 8 1.4 Systematic solution of linear systems. . . . . . . . . . . . . . 9 1.5 Homogeneous systems . . . . . . . . . . . . . . . . . . . . . . 16 1.6 PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 MATRICES 23 2.1 Matrix arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Linear transformations . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Recurrence relations . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5 Nonsingular matrices . . . . . . . . . . . . . . . . . . . . . . 36 2.6 Least squares solution of equations . . . . . . . . . . . . . . . 47 2.7 PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 SUBSPACES 55 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Subspaces of F n . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 Linear dependence . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 Basis of a subspace . . . . . . . . . . . . . . . . . . . . . . . . 61 3.5 Rank and nullity of a matrix . . . . . . . . . . . . . . . . . . 64 3.6 PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 DETERMINANTS 71 4.1 PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 i 5 COMPLEX NUMBERS 89 5.1 Constructing the complex numbers . . . . . . . . . . . . . . . 89 5.2 Calculating with complex numbers . . . . . . . . . . . . . . . 91 5.3 Geometric representation of C . . . . . . . . . . . . . . . . . . 95 5.4 Complex conjugate . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5 Modulus of a complex number . . . . . . . . . . . . . . . . . 99 5.6 Argument of a complex number . . . . . . . . . . . . . . . . . 103 5.7 De Moivres theorem . . . . . . . . . . . . . . . . . . . . . . . 107 5.8 PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 EIGENVALUES AND EIGENVECTORS 115 6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Definitions and examples . . . . . . . . . . . . . . . . . . . . . 118 6.3 PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7 Identifying second degree equations 129 7.1 The eigenvalue method . . . . . . . . . . . . . . . . . . . . . . 129 7.2 A classification algorithm . . . . . . . . . . . . . . . . . . . . 141 7.3 PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8 THREEDIMENSIONAL GEOMETRY 149 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.2 Threedimensional space . . . . . . . . . . . . . . . . . . . . . 154Threedimensional space ....
View Full Document

This note was uploaded on 09/23/2010 for the course MATH 1121 taught by Professor Dr.mcgrawhill during the Spring '10 term at SUNY Buffalo.

Page1 / 302

Elementary Linear Algebra( K.R. Matthews) - ELEMENTARY...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online