35 Lecture 8 - Inference for Variances

35 Lecture 8- - Lecture8 Chapter10 1 2 3 4 5 Nullhypothesis,H0 ,HA Rejectionregion Teststatistic pvalue(ifpossible 2 Whatwillchang

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Lecture 8: Inference for Variances For one and two populations Prepare for an easy ride  Chapter 10
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 The 5 hypothesis test steps 1. Null hypothesis, H 0 2. Alternative hypothesis, H A 3. Rejection region 4. Test statistic 5. p-value (if possible)
Background image of page 2
3 The steps remain the same… What will change: The parameter we make inferences about:  Single variance Ratio of variances The distributions we use for our critical  values:  χ distribution F-distribution
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Inference for a Single Variance Hypothesis Test Confidence Intervals
Background image of page 4
5 Example An inventory management model is  being used that is sensitive to the  standard deviation of the daily demand.   Currently the model is calibrated to a  standard deviation of 12 units per day.   You decide to see if this is still valid,  based on the past 22 days.  In this  sample, the standard deviation is 10.2.   Use  α  = 0.05
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6 H O :   σ 2  = 144 H A σ 2    144 We have to perform the test on the  variances , not the standard deviations Remember this! This is a two-tailed test
Background image of page 6
7 Inference for a Single Variance The appropriate distribution for a single  variance is the  chi-squared  ( χ 2 pronounced “ki”, rhyming with “eye”)
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8 The  χ Distribution The  χ 2  distribution is not symmetrical, so  we need to look up two values in 2-tailed  situations. Like the t-distribution, the  χ 2  is a function of  the number of degrees of freedom The table is quite similar to the t, except  that two values are given for every  α Table: Appendix G, page 746
Background image of page 8
Demonstrate  χ 2  Distribution CPD.xls
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/25/2010 for the course OMIS OMIS 1000 taught by Professor Alexandershoumarov during the Fall '09 term at York University.

Page1 / 35

35 Lecture 8- - Lecture8 Chapter10 1 2 3 4 5 Nullhypothesis,H0 ,HA Rejectionregion Teststatistic pvalue(ifpossible 2 Whatwillchang

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online