34 Lecture 8 - Single-Factor ANOVA (updated Nov 10)

34 Lecture 8 - Single-Factor ANOVA (updated Nov 10) -...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Lecture 8: Single-Factor ANOVA Section 11-1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 ANOVA ANOVA stands for  AN alysis  O VA riance ANOVA allows us to: Do multiple tests of means at one time more than two groups Test for multiple effects simultaneously more than one variable
Background image of page 2
3 ANOVA Tests The types of ANOVA we will look at are: Single-Factor (One Way) ANOVA Today Randomized block design ANOVA Two-Factor ANOVA Both next class We will also see ANOVA in regression  analysis
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4 ANOVA Assumptions 1. All populations are normally distributed 2. The population variances are equal ANOVA tests assume that variances can be  pooled 3. The observations are independent These are important in order to  understand ANOVA See page 410 in textbook
Background image of page 4
5 One-Way ANOVA One-way ANOVA allows us to  simultaneously test to determine if two  or more population means are equal H 0 : μ 1  =  μ 2  =  μ 3 H A : At least two means differ
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6 Example We are interested in seeing if the  advertising strategies employed in  different cities made a difference We assume that these cities have been  shown to be similar in the past The sales results for 10 weeks in each  of the these cities is displayed on the  next slide
Background image of page 6
7 Example Data 529 498 804 492 672 691 658 663 630 719 531 733 793 604 774 787 443 698 514 495 717 699 596 776 663 485 679 572 602 561 719 557 604 523 502 572 711 353 620 584 659 469 606 557 697 634 689 581 461 542 706 580 675 679 529 614 615 624 512 532 City 1 City 2 City 3 Convenience Quality Price
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8 Terminology We have a  response variable , the level  of weekly sales There is one  factor  (i.e. variable): type  of advertising strategy  There are three  treatments or levels  (i.e. variable values): the different  strategies used in these cities
Background image of page 8
529 498 804 492 672 691 658 663 630 719 531 733 793 604 774 787 443 698 514 495 717 699 596 776 663 485 679 572 602 561 719 557 604 523 502 572 711 353 620 584 659 469 606 557 697 634 689 581 461 542 706 580 675 679 529 614 615 624 512 532 Mean 577.55 Mean 653.00 Mean 608.65 613.0667 Grand Mean City 1 City 2 City 3 Convenience Quality Price Means and Grand Mean X ij  values of  response variable     i  values X X
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
10 The Logic of ANOVA Let’s learn to think in terms of  variation: Variation of X values around Variation of    values around   Variation in some set of values means 
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/25/2010 for the course OMIS OMIS 1000 taught by Professor Alexandershoumarov during the Fall '09 term at York University.

Page1 / 35

34 Lecture 8 - Single-Factor ANOVA (updated Nov 10) -...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online