OS_Paper_sol-novdec 17.docx - FACULTY OF ENGINEERING T.E(CSE\/IT EXAMINATION Operating Systems Q.1 Attempt any five questions form following 1

OS_Paper_sol-novdec 17.docx - FACULTY OF ENGINEERING...

This preview shows page 1 - 2 out of 19 pages.

FACULTY OF ENGINEERING T.E. (CSE/IT) EXAMINATION Operating Systems Q.1 Attempt any five questions form following. 1) Differentiate between multiprogramming and multitasking. Ans:Multiprogramming In a multiprogramming system there are one or more programs loaded in main memory which are ready to execute. Only one program at a time is able to get the CPU for executing its instructions (i.e., there is at most one process running on the system) while all the others are waiting their turn. The main idea of multiprogramming is to maximize the use of CPU time. Indeed, suppose the currently running process is performing an I/O task (which, by definition, does not need the CPU to be accomplished). Then, the OS may interrupt that process and give the control to one of the other in-main-memory programs that are ready to execute (i.e. process context switching ). In this way, no CPU time is wasted by the system waiting for the I/O task to be completed, and a running process keeps executing until either it voluntarily releases the CPU or when it blocks for an I/O operation. Therefore, the ultimate goal of multiprogramming is to keep the CPU busy as long as there are processes ready to execute. Note that in order for such a system to function properly, the OS must be able to load multiple programs into separate areas of the main memory and provide the required protection to avoid the chance of one process being modified by another one. Other problems that need to be addressed when having multiple programs in memory is fragmentation as programs enter or leave the main memory. Another issue that needs to be handled as well is that large programs may not fit at once in memory which can be solved by using pagination and virtual memory . Please, refer to this article for more details on that. Finally, note that if there are N ready processes and all of those are highly CPU-bound (i.e., they mostly execute CPU tasks and none or very few I/O operations), in the very worst case one program might wait all the other N- 1 ones to complete before executing. Multitasking Multitasking has the same meaning of multiprogramming but in a more general sense, as it refers to having multiple (programs, processes, tasks, threads) running at the same time. This term is used in modern operating systems when multiple tasks share a common processing resource (e.g., CPU and Memory). At any time the CPU is executing one task only while other tasks waiting their turn. The illusion of parallelism is achieved when the CPU is reassigned to another task (i.e. process or thread context switching ). There are subtle differences between multitasking and multiprogramming. A task in a multitasking operating system is not a whole application program but it can also refer to a “thread of execution” when one process is divided into sub-tasks. Each smaller task does not hijack the CPU until it finishes like in the older multiprogramming but rather a fair share amount of the CPU time called quantum.
Image of page 1
Image of page 2

You've reached the end of your free preview.

Want to read all 19 pages?

  • Spring '16
  • 213
  • Computer multitasking

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

Stuck? We have tutors online 24/7 who can help you get unstuck.
A+ icon
Ask Expert Tutors You can ask You can ask You can ask (will expire )
Answers in as fast as 15 minutes