{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Diff_Revision - Differentiation Revision The Basics...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
The Scooter Tutor www.thescootertutor.com.au Differentiation Revision The Basics: Remember that the derivative of a function is simply the instantaneous rate of change of that function. g2722g2207 g2722g2206 = g2188g4666g2206 + g2190g4667 − g2188g4666g2206g4667 g2190 g2207g4666g2206g4667 g2186g2207 g2186g2206 g1866g1876 g3028 g1877 g4593 g4666g1876g4667 = g1853g1866g1876 g3028g2879g2869 sin g4666g1876g4667 cos g4666g1876g4667 cos g4666g1876g4667 −sin g4666g1876g4667 tan g4666g1876g4667 sec g2870 g4666g1876g4667 g1857 g3028g3051 g1853g1857 g3051 ln g4666g1876g4667 1 g1876
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
The Scooter Tutor www.thescootertutor.com.au The Rules: Product Rule – For use when you need to find the derivative of a function that is the product ( multiple) of two individual functions: g1858g4666g1876g4667 = g1873g4666g1876g4667 × g1874g4666g1876g4667. It states that the derivative of such function can be calculated by: g1856g1877 g1856g1876 = g1856g1873 g1856g1876 × g1874g4666g1876g4667 + g1856g1874 g1856g1876 × g1873g4666g1876g4667 Example: g1858g4666g1876g4667 = g1876 g2870 sing4666g1876g4667 Steps: 1. Establish g1873g4666g1876g4667 and g1874g4666g1876g4667 and then take the derivative of those two functions: g1873g4666g1876g4667 = g1876 g2870 g1874g4666g1876g4667 = sin g4666g1876g4667 g1873′g4666g1876g4667 = 2g1876 g1874 g4593 g4666g1876g4667 = cos g4666g1876g4667 2. Now we apply our results to the formula: g1877 g4593 g4666g1876g4667 = g1873 g4593
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}