{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Diff_Revision

# Diff_Revision - Differentiation Revision The Basics...

This preview shows pages 1–3. Sign up to view the full content.

The Scooter Tutor www.thescootertutor.com.au Differentiation Revision The Basics: Remember that the derivative of a function is simply the instantaneous rate of change of that function. g2722g2207 g2722g2206 = g2188g4666g2206 + g2190g4667 − g2188g4666g2206g4667 g2190 g2207g4666g2206g4667 g2186g2207 g2186g2206 g1866g1876 g3028 g1877 g4593 g4666g1876g4667 = g1853g1866g1876 g3028g2879g2869 sin g4666g1876g4667 cos g4666g1876g4667 cos g4666g1876g4667 −sin g4666g1876g4667 tan g4666g1876g4667 sec g2870 g4666g1876g4667 g1857 g3028g3051 g1853g1857 g3051 ln g4666g1876g4667 1 g1876

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
The Scooter Tutor www.thescootertutor.com.au The Rules: Product Rule – For use when you need to find the derivative of a function that is the product ( multiple) of two individual functions: g1858g4666g1876g4667 = g1873g4666g1876g4667 × g1874g4666g1876g4667. It states that the derivative of such function can be calculated by: g1856g1877 g1856g1876 = g1856g1873 g1856g1876 × g1874g4666g1876g4667 + g1856g1874 g1856g1876 × g1873g4666g1876g4667 Example: g1858g4666g1876g4667 = g1876 g2870 sing4666g1876g4667 Steps: 1. Establish g1873g4666g1876g4667 and g1874g4666g1876g4667 and then take the derivative of those two functions: g1873g4666g1876g4667 = g1876 g2870 g1874g4666g1876g4667 = sin g4666g1876g4667 g1873′g4666g1876g4667 = 2g1876 g1874 g4593 g4666g1876g4667 = cos g4666g1876g4667 2. Now we apply our results to the formula: g1877 g4593 g4666g1876g4667 = g1873 g4593
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}