{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

2006 MATH 1025 Class test 2

# 2006 MATH 1025 Class test 2 - York University Faculty of...

This preview shows pages 1–8. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: York University Faculty of Arts, Faculty of Science Math 1025 Class Test 2 NAME (print): SIGNATURE: STUDENT NUMBER: Instructions: 1. Time allowed: 50 minutes 2. There are 5 questions on 7 pages. 3. Answer all questions. 4. Your work must justify the answer you give. 5. No calculators or other aids permitted. Page 1 MATH 1025 Test 2 February 24, 2006 1. Let 0 2 2 6 1 1 2 1 A _ 2 1 2 —-1 1 1 1 2 (a) (6 points) Compute the determinant of A. fir/V V; [47: I 7’71 54\$ III; 00"!) __ 22/6 0—2— 0 .._. "1-2’3 2 "' “"23 O~l I Q") ___Q\, Page 2 MATH 1025 February 24, 2006 (b) (6 points) Find the 1-3 entry of A71. » ’ fix/J —\_ _,_—.—— ,_,__._ , Test 2 22E: [(3 12.! I 2/ 2:" I [2’ 3)! la 00’ tZ—H ﬂit 12/):1ln[/”“<>1 \ﬁvcﬂ‘j‘” / mg I I 2— 3 "-\Ci"/ mmvd" L g/I... __ w—I LULxICA F5 U53 7% (6 £1” (Daft/km, UC/dm (4/) - » x ./ 5' 7. i ’ an ‘x T W! ’ C A KO \ f‘jVQCMd/L/ XUA O \W “\$365de C/CQ/q W7C _ . ‘7 5 r Ff \U/Cnﬁx/j a {V0 /ﬂ C Page 3 MATH 1025 Test 2 February 24, 2006 (C) (6 points) Use Cramer’s rule to ﬁnd the value of c where 2b+20+6d= 0 a+b+2c+d= 1 2a+b+2c—d= 0 a+b+C+2d= 0 Note: Only ﬁnd 0. You must use Cramer’s rule. N0 marks will be given if you use any other method. 0 209-, o 2.,é ‘ L. \IOJI --* 9L "" C 1:. ‘ 1,701 2 I l 2... 2c, 7:. ﬂ 0"!” ~'..j" 1 I2— ”" M r t "\ '\ lb'C/Lqp(c}/\ s tit/6% - Page 4 MATH 1025 Test 2 February 24, 2006 c d 21) 2a 20 2d . . g h _ 3n—b 3m—a 30—0 3p—d 2. (6 p01nts) Gwen that k l — 2, ﬁnd f e g h . F“ 0 p 2f — j 26— 2 29— k 2h— l ,. f“ ”‘4“ I! show complete work. j (K C'CL C UL [1+0 €wﬂ=f 2*” a“ 2.22.4 'k’fci 22' 3’1‘5 3M4 33—6. 310—4 2 3 3M3 3 2 n o I H. 7C :2 g ‘7’; F: j 4% .257 am: 2j—k awe —) —L——I<—2 Page 5 MATH 1025 Test 2 February 24, 2006 3. (4 points) Let A and B be 3X3 matrices with det(A) = 2 and det(B) = —3. Evaluate det((3AT)_1 B2 A). Show complete work. MATH 1025 4. (6 points) Let A = [ 2 0 0 12—1 13—2 Page 6 Test 2 February 24, 2006 . For which values of /\ does Ax = A3: have nontrivial solutions? V Page 7 MATH 1025 Test 2 February 24, 2006 5. (6 points) Write the determinant of the matrix _______”—-——v as the sum of its nonzero signed elementary products and compute its value. Show your work. On} MW nonacro W d€MtnTmr¢L¢\ is?“ {I ,'—~ fr? My ewwm m 5%; r—xJ Ca r-raffo Ari; “+2: [pal/m od—cz'ﬁOvt (r/ a 3 é it) fit? and w ++1 :5 I~Um7W-;’ /,______J 7% &@7L’€ rminmf 1162: VQ/UC ,7 é!) 5("2—)(7)[F)(~3)( 0(1) /( (”M ”.2 ———o’ZIO. MC“ got PRIQ (DU dd’A-m/ Nd (3W6 / . The end ...
View Full Document

{[ snackBarMessage ]}