test5_10Sol

# T rcos t sin t t r i jv exp exp sin cos

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: tored by: x1,2 = − p ± p4 − q 2 uniform circular m. ￿(t) = R(cos ω t ˆ + sin ω t ˆ); ￿ (t) = r i jv exp￿ = exp; sin￿ = cos; cos￿ = − sin. m￿ = Fnet ; a￿ FG = Gm1 m2 ; r2 d [f (g (x))] dx df dt df dt = 1 F (t) = ￿ ￿ f (t) dt = t2 2 +C ￿ 2 = d￿ r dt df dg ; dg dx = ...; ￿ (t) = a d￿ v dt = .... (f g )￿ = f ￿ g + f g ￿ 2 g= GME 2; RE a a in in ﬁn ﬁn ∆p1 + ∆p2 = 0 ; K1 + K2 = K1 + K2 for elastic collisions. ￿ CM = m1￿ 1 +m2￿ 2 ￿ ￿ a m1 +m2 ￿ 2 ˆ ￿ = ￿ × F ; τz = rF sin(α) for ￿, F in xy plane. I = i mi ri ; I αz = τz ; (k = rot. axis) τr￿ r￿ ￿r￿ ￿τ Krot = I ω 2 ; Lz = I ωz ; d Lz = τz ; L = ￿ × p; d L = ￿ 2 dt dt fs ≤ µs n; fk = µk n; fr = µr n; µr << µk < µs . FH = −k ∆x = −k (x − x0 ). ￿ Fd ∼ −￿ ; linear: Fd = dv ; quadratic: Fd = 0.5ρAv 2 ; A = cross sectional area v W = F ∆x = F (∆r) cos θ. W = area under Fx (x). P E H = k (∆x)2 ; P E g = mg ∆y . 2 ￿ avg ￿ ∆p = J = F (t)dt; ∆px = Jx = area under Fx (t) = Fx ∆t ; p = m￿ ; K = m v 2 ￿￿ ￿ v 2 RE = 6370 km; G = 6.67 × 10−11 Nm2 ; ME = 6.0 × 1024 kg kg x(t) = A cos (ω t + φ); ω = 2π = 2π...
View Full Document

## This note was uploaded on 09/28/2010 for the course MATH 1025 taught by Professor Tammie during the Fall '10 term at York University.

Ask a homework question - tutors are online