MAT 232-Calc-1-A3 - Calculus I Calculus: Early...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Calculus I Calculus: Early Transcendental Functions , 4th ed., by Ron Larson, Robert Hostetler, and Bruce H. Edwards (Boston: Houghton Mifflin, 2007; ISBN-10: 0-618-60624-6). Written Assignment 3 The written assignment draws on even-numbered exercises from the textbook. Answer all assigned exercises, and show all work. Section Exercises 3.1 14 , 22, 24, 26(a), 30(a), 32(a) 3.2 12, 22, 24, 26, 32, 40, 42, 48, 56, 94 3.3 14, 18, 20, 24, 28, 32, 52, 104 3.4 10, 16 , 22, 30, 60, 66 , 102, 110, 160 3.5 6 , 16, 20, 26, 34, 52 3.7 2, 6, 18(a), 20, 22 , 24, 30, 32, 34, 44 Section 3.1 Find the derivative by the limit process Exercise 14 ƒ(x) = 3x + 2 ƒ`(x) =lim ƒ(x+∆x) – ƒ(x) / ∆x ∆x>0 ƒ`(x) =lim [3(x+∆x) +2] – [3x + 2] / ∆x ∆x>0 ƒ`(x) =lim 3x+3∆x+2 – 3x + 2 / ∆x ∆x>0 ƒ`(x) =lim 3∆x / ∆x ∆x>0 ƒ`(x) =lim 3 ∆x>0 ƒ`(x) = 3 Exercise 22 ƒ(x) = 1/x 2 ƒ`(x) =lim ƒ(x+∆x) – ƒ(x) / ∆x ∆x>0 1 1 ƒ`(x) =lim (x+∆x) 2 (x 2 )
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
∆x x 2 - (x+∆x) 2 ƒ`(x) =lim x 2 (x+∆x) 2 X x 2 (x+∆x) 2 ∆x>0 ∆x x 2 (x+∆x) 2 ƒ`(x) =lim x 2 - (x 2 +(∆x) 2 + 2x∆x) ∆x>0 ∆x(x 2 ) (x+∆x) 2 ƒ`(x) =lim - (∆x) 2 - 2x∆x ∆x>0 ∆x(x 2 ) (x+∆x) 2 ƒ`(x) =lim -∆x - 2x ∆x>0 (x 2 ) (x+∆x) 2 ƒ`(x) =lim -0 - 2x ∆x>0 (x 2 ) (x+ 0) 2 ƒ`(x) =lim - 2x X x ∆x>0 x 4 x ƒ`(x) =lim - 2 ∆x>0 x 3 Exercise 24 ƒ(x) =lim 4 ∆x>0 √x ƒ`(x) =lim ƒ(x+∆x) – ƒ(x) / ∆x ∆x>0 4 4 ƒ`(x) =lim √(x+∆x) – √x ∆x>0 ∆x 4 4 ƒ`(x) =lim √(x+∆x) – √x x √(x+∆x) – √x ∆x>0 ∆x √(x+∆x) – √x ƒ`(x) =lim 4(√x - √(x+∆x)) x √x +√(x+∆x) ∆x>0 ∆x(√(x+∆x)(√x) √x -√(x+∆x) ƒ`(x) =lim 4 x – x - ∆x . ∆x>0
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 8

MAT 232-Calc-1-A3 - Calculus I Calculus: Early...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online