Sol-161E1-F2006

# Sol-161E1-F2006 - 1 The graph Of 332" 633 8 — y = 0...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1- The graph Of 332 " 633 + 8 — y = 0 is A. Moving it 4 units to the right and 3 units down obtained from the graph of y = 3:2 by B. Moving it 3 units to the left and 1 unit up 2 . : 96—32% . . . . . f x © Mov1ng 1t 3 units to the right and 1 unit down 13R , H) D. Moving it4units to the left and3units down E. Moving it 1 unit to the right and 3 units up 2. The solution to the inequality :1: g 53: — 3 < 8:1: — 2 is A. a: > _1 — 3 ’X S 59GB 993 _, \U/ 5. 3/304 2 \$>§ 4 A. _ 4 3\ ’X. . I ’1 < 3% 1 3 3 \l/ - i < C’ _3 S a: < 1 f' €64 AND 3 IX 14 D —l < a: <§ 3 “ 4 3 E _ 32> 4 3 Given that sins: 2 and cosa:< 0 it follo sthat tan 'se alt 2 . : — , w 3:1 u o —— 5 q m I ‘ I ' 21 (1.6496 2 W :1 — 24 B. —% 5 C. —— . x/ﬁ ‘51“ 0g :1 Hm“) : 4 D. —— Clo/>96 25 4 E. —— x/ﬁ 4. The center C and radius r of the circle given by 129 x2+y2ﬂlﬂx+3y25are A. C:(_§,5)7T:V2 V 129 2 2 _ _§ _ «6).. ”(a 2w— 5) /‘ , L 2 c. C:(5,—3), r27 C j : iii 30% :r7‘ 2 2 («~- 5. An equation of the line through (—2, 2) and parallel to 33/ + 41: + 2 : 0 4x + 33/ ~ 7 = 0 is C. -4x+3y—14:0 // W (~23) 12/ D. 4y+3\$+2=0 E. 2x+3y—-2:0 “*2 = -i(%+a) #l/ .3 béf-M’x + 2 : O 6. Given that f(a:) = V4 —a:2 and 9(33) : V332 + 1, the A. [—f,—2] U [2,\/5] domain of g o f is B. [—x/5,\/5] 0’” ‘3) = (mam) o. W) Ola/”V (g) I {K i 44962303 2 E2) 2] D. (—00,—\/3]U[\/5,oo) m” M<3°é> 501%) = E23] CE) ”’21 7. Which of the following statements are true? Only I ‘T 1.5“3-53’ : 5““! F 11.(4-3)\$:4z+3“‘ @001, 42%? F HI.8\$+8y:8z+y é; Xga—J1J 46%;"4 C. Onlylandll D. Only III E. 1, H7 and Ill 8. The inverse of the function f(a:)= ::;: 131613“ )2 A' iii—2: 12.3 “a ___, __, 2\$~5 jg}? ._.> 2x7+57.,33g»2 13-3433 C 2x+3 :5 (2x296: ~2—57C 5—206 ’ 5x+2 @ €3519C+2 3‘21: 3__ 2% 333—2 E. 3—53: 9. lim m_f_ _,ZM‘ {\l2;(+5~J-TT)\J27(+5 44:1,) A. ﬁ—ﬁ z—)l a3~1 X7i (9e / (l2x+574~E) B i ’ x/S ﬁg,” 27C+5 4 2 «~71 <94 4><m+m 0‘ W = @w 2 D‘ flﬁ 5— "” M<l2X+5 A“) 1 3 2 .. 4 @W H+H JET 10. If f and g are continuous at x : 2 with 9(2) 2 3 2f(\$ )—39(\$) _ n i and z113% 2g(\$ ) ﬁx) —7, the f(2) s 2gb) 3%(22) 3[2ﬁl2) )dgl2)il :7 q<t2);1’+3(z)—le3 A. undeﬁned .le 3 7 C. — — 3 D. :1 E. impossible to determine Q 3; 1 — 4x2 + 7x3 11. l' —— — \ z—iI—noo 28x3 — 7m + e “ B. . 4 ,{ ‘ : —g :3 T s A. C. - 2 D. E. 12. The total number of asymptotes, vertical and horizontal, for A the a hoff(x) (3‘2 ' . , r : —— IS g p \/ 2:02 + 750 + 3 B. l .. 1,1“; M X’“§. @ begin-441% 4‘7 .3 1- ac...» “M 2+ 3;: r .532 5 Coll—l ptxlr—I l0 [\Dll—l 13. If a ball is thrown directly up from the ground with a velocity v0, then A. 120 its height above ground at time t is given by H (t) : vot — gtz until is falls back to the ground. Here 9 is the acceleration of gravityt Then, B. 39 the velocity of the ball when it hits the ground 1s2 29 pix. w'ZZJIV TcL.m: ﬁ/J 2g ‘ if 120 a, Hm— Mai») . «gm; 3, ). Q Tag/g zgt—AUQ “\$912321? 2W~—2ﬂr/)j: a 32 2h — 1 ' _ 14- fl(a) = gig) (—hl represents thgderivative of — ‘32 and (1—0 _* a certain function f at a number a in its domain. B f(x )_ _ 32. 2x and (1— _ 2 Determine f and a. 25 f(1; ):2m nda=5 g(a): am” 25 @( a vao R, D. f(x):2“’anda=32 QAS 5 :ﬂ/m/ 2 ___—2‘? _ 1 E. f(x) = 32 and a = 0 Kata R] J: 15. Ifr + 38 + 1 = 0 is the tangent line to 7‘ = 9(5) at A. g(—1)= 2 and g’(—1) : 3 (— ,2),then \DR/ :{ivmﬁr'ﬂ ,. i“&% B, g(2)=—1andg’2:() 3 (2/ “E3 s j _. i ‘— _: 1 g Z (. A) (s ‘l‘ Jl) ﬁ FL 5 (’4‘)? E C. g(—1): 2 and g/(__1) : _é ’ ﬂy} ”7’ 63H) + a(—1)+2:l my D- 9(2) = —1 and g'(_1) : 3 7 I %\~\4):-3 4M5 3%!”st @g(—1)=2andg'(—1):—3 ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern