examples-ch3

examples-ch3 - MATH 152 Fall 2006-07 Applied Linear Algebra...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 152 Fall 2006-07 Applied Linear Algebra & Differential Equations Worked Examples Dr. Tony Yee Department of Mathematics The Hong Kong University of Science and Technology September 1, 2006 ii Contents Table of Contents iii 1 Introduction 1 2 First-Order Differential Equations 5 3 Second-Order Linear Equations 39 4 Laplace Transform 83 5 Matrix 127 6 Systems of Linear Equations 135 7 Euclidean Vector 155 8 Eigenvalue and Eigenvector 177 9 Systems of Differential Equations 209 10 Orthogonality 231 iii Chapter 3 Second-Order Linear Equations ¥ Example 3.1 (Fundamental solutions) Verify that the functions y 1 ( t ) = t 2 and y 2 ( t ) = 1 /t are solutions of t 2 y 00- 2 y = 0 , t > . (3.1) Solution By t 2 y 00 1- 2 y 1 = t 2 (2)- 2( t 2 ) = 0 = ⇒ y 1 = t 2 is a solution of Eq (3.1) , t 2 y 00 2- 2 y 2 = t 2 ( 2 t 3 )- 2( 1 t ) = 0 = ⇒ y 2 = 1 t is a solution of Eq (3.1) . Furthermore, for any constants c 1 and c 2 , t 2 ( c 1 y 1 + c 2 y 2 ) 00- 2( c 1 y 1 + c 2 y 2 ) = c 1 ( t 2 y 00 1- 2 y 1 ) + c 2 ( t 2 y 00 2- 2 y 2 ) = c 1 (0) + c 2 (0) = . ∴ c 1 y 1 + c 2 y 2 is also a solution of Eq (3.1). Since y 1 /y 2 = t 3 6≡ constant, y 1 and y 2 are linearly independent and hence c 1 y 1 + c 2 y 2 is the general solution of Eq (3.1), the second-order linear differential equation. 2 ¥ Example 3.2 (Fundamental solutions) Verify that the functions y 1 ( t ) = 1 and y 2 ( t ) = √ t are solutions of yy 00 + ( y ) 2 = 0 , t > . (3.2) Solution By y 1 y 00 1 + ( y 1 ) 2 = (1)(0) + (0) 2 = 0 = ⇒ y 1 = 1 is a solution of Eq (3.2) , y 2 y 00 2 + ( y 2 ) 2 = ( t 1 / 2 )(- 1 4 t- 3 / 2 ) + ( 1 2 t- 1 / 2 ) 2 = 0 = ⇒ y 2 = √ t is a solution of Eq (3.2) . But, for any constants c 1 and c 2 , ( c 1 y 1 + c 2 y 2 )( c 1 y 1 + c 2 y 2 ) 00 + [( c 1 y 1 + c 2 y 2 ) ] 2 = ( c 1 + c 2 y 2 )( c 2 y 00 2 ) + c 2 2 ( y 2 ) 2 = ( c 1 + c 2 t 1 / 2 )(- 1 4 c 2 t- 3 / 2 ) + c 2 2 ( 1 4 t- 1 ) =- 1 4 c 1 c 2 t- 3 / 2 6≡ . ∴ c 1 y 1 + c 2 y 2 is, in general, not a solution of Eq (3.2). It is because Eq (3.2) is indeed a nonlinear equation. 2 39 3. Second-Order Linear Equations ¥ Example 3.3 (Fundamental solutions) Let y 1 and y 2 be solutions of the homogeneous equation y 00 + p ( t ) y + q ( t ) y = 0 (3.3) satisfying respective initial conditions y 1 (0) = 1 , y 1 (0) = 0; y 2 (0) = 0 , y 2 (0) = 1 . Find a solution satisfying the conditions y (0) = 3 , y (0) =- 5 . Solution By the given initial conditions of y 1 (0) and y 2 (0), we know that y 1 and y 2 are linearly independent solutions of Eq (3.3). Then y ( t ) = c 1 y 1 ( t ) + c 2 y 2 ( t ) is also a solution of the linear Eq (3.3). Because y 1 and y 2 are linearly independent, c 1 y 1 + c 2 y 2 is the general solution of Eq (3.3). Now 3 = y (0) = c 1 y 1 (0) + c 2 y 2 (0) = c 1 (1) + c 2 (0) ,- 5 = y (0) = c 1 y 1 (0) + c 2 y 2 (0) = c 1 (0) + c 2 (1) ....
View Full Document

Page1 / 48

examples-ch3 - MATH 152 Fall 2006-07 Applied Linear Algebra...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online