{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lecture4 - MS&E211 ondoingtheproject WorkonyourHW1 MS&E211...

Info iconThis preview shows pages 1–18. Sign up to view the full content.

View Full Document Right Arrow Icon
MS&E  211
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
4 units no longer requires a paper Project is only required for project credit Reply to the announcement if you intend  on doing the project Discussion Section starts tomorrow Work on your HW1 MS&E 211
Background image of page 2
Basic Solutions in Standard Form Are basic solutions feasible? Fundamental Theorem of LP’s (proof sketch) Implications Simplex Method The History The Tableau Pivoting Optimality Check Initialization MS&E 211
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
MS&E 211
Background image of page 4
MS&E 211
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
MS&E 211
Background image of page 6
MS&E 211
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
MS&E 211
Background image of page 8
MS&E 211 X B X Non-trivial  Intersection X* If the Linear Program is feasible and bounded, then  there exists an optimal basic solution.
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
MS&E 211 X B X Non-trivial  Intersection
Background image of page 10
MS&E 211 Take x  ϵ X Rearrange A & x: If B has less than m columns, you are done. Otherwise, the p > m columns of B must not be linearly independent. Therefore, there exists a non-trivial w ϵ R p : Bw = 0 Add zeros to the end of w to make it n-dimensional. Take x new = x – ε w, for the value ε such that the number of zero components of x increases by one, and no components of x are made negative.
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
MS&E 211
Background image of page 12
MS&E 211 X B X X* Non-trivial  Intersection
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
MS&E 211 Take x*  ϵ X* Count number of zero components If there are not enough of them, then find w as before. Since both (x* – ε w) AND (x* + ε w) ϵ X for small ε , and have objective values c’ x* ± ε c’w, respectively, then c’w must equal zero. Else x* is not optimal. Thus take x* new = x* – ε w, as before. It is also optimal. It has one more zero component. It is also still feasible.
Background image of page 14
MS&E 211 c w
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
MS&E 211 It is sufficient to search X B  for an x B* X B X Non-trivial  Intersection X*
Background image of page 16
Find an x ϵ X B Use it to find an x ϵ X B X
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 18
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}