204Section32009

# 204Section32009 - Econ 204 Section 3 GSI: Hui Zheng Key...

This preview shows pages 1–2. Sign up to view the full content.

Econ 204 Section 3 GSI: Hui Zheng Key Words Supremum Property, Intermediate Value Theorem. Section 3.1 Field and Vector Space Lecture 2 Section 1.5 Field Axioms (nine properties). Lecture 2 Section 1.5 Vector Space Axioms (eight properties). Example 3.1.1 Show that Q ( p 2) over Q is a vector space. Recall in lecture Q ( p 2) = f q + r p 2 : q; r 2 Q g . Check the eight properties. Associativity of + : 8 q 1 + r 1 p 2 ; q 2 + r 2 p 2 ; q 3 + r 3 p 2 2 Q ( p 2) ; ( q 1 + r 1 p 2+ q 2 + r 2 p 2)+ q 3 + r 3 p 2 = q 1 + r 1 p 2+( q 2 + r 2 p 2+ q 3 + r 3 p 2) Commutativity of + : 8 q 1 + r 1 p 2 ; q 2 + r 2 p 2 2 Q ( p 2) ; q 1 + r 1 p 2 + q 2 + r 2 p 2 = q 2 + r 2 p 2 + q 1 + r 1 p 2 Existence of vector additive identity: 9 0 = 0 + 0 p 2 2 Q ( p 2) ; 8 q 1 + r 1 p 2 2 Q ( p 2) ; q 1 + r 1 p 2 + 0 = q 1 + r 1 p 2 Existence of vector additive inverse: 8 q + r p 2 2 Q ( p 2) ; 9 ( ± q ) + ( ± r ) p 2 2 Q ( p 2) ; s:t: q + r p 2 + ( ± q + ( ± r ) p 2) = 0 Distributivity of scalar multiplication over vector addition: 8 a 2 Q ; 8 q 1 + r 1 p 2 ; q 2 + r 2 p 2 2 Q ( p 2) ; a ² ( q 1 + r 1 p 2+ q 2 + r 2 p 2) = a ² ( q 1 + r 1 p 2)+ a ² ( q 2 + r 2 p 2) Distributivity of scalar multiplication over scalar addition: 8 a; b 2 Q ; 8 q + r p 2 2 Q ( p 2) ; ( a + b ) ² ( q + r p 2) = a ² ( q + r p 2) + b ² ( q + r p 2) Associativity of ² : 8 a; b 2 Q ; 8 q + r p 2 2 Q ( p 2) ; ( a ² b ) ² ( q + r p 2) = a ² f b ² ( q + r p 2) g Multiplicative identity: 8 q + r p 2 2 Q ( p 2) ; 9 1 2 Q ; 1 ² ( q + r p 2) = q + r p 2 X ³ R . We say u is an upper bound for X if 8 x 2 X x ´ u and l is a lower bound for X if 8 x 2 X x µ l . X is bounded above. The supremum of X , written sup X; is the smallest upper bound for X , i.e. sup X 8 x 2 X x ´ sup X and 8 y < sup X 9 x 2 X x > y: The of X , written inf X; is the largest lower bound for X , i.e. inf X 8 x 2 X x µ inf X and 8 y > inf X 9 x 2 X x < y: Example 3.2.1 Sup and Inf Suppose X = f 1 x j 1 ´ x < + 1g sup X = 1 and inf X = 0 .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## 204Section32009 - Econ 204 Section 3 GSI: Hui Zheng Key...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online