CIS3360_HW6_v2_Solution_3-24-10

CIS3360_HW6_v2_Solution_3-24-10 - Page 1 of 7 CIS 3360...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Page 1 of 7 CIS 3360 – Security in Computing Spring 2010 Solution for Homework 6 1) [10] Show steps to compute the four-bit checksum for the message 1110 1010 0110 1010 1001. Remember to take the 1’s and 2’s complement at the end. Write out the message that is transmitted with the checksum. Solution: 1110 + 1010 1000 + 0110 1110 + 1010 1000 + 1001 0001 1’s complement: 1110 2’s complement: 1111 Appending the 4-bit checksum to the message, we get: 1110 1010 0110 1010 1001 1111
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Page 2 of 7 2) [10] Show steps to compute four-bit CRC for the message 1011 1011 1101 1010 1111 using the polynomial x 4 + x 3 + x 2 + 1. Write out the message that is transmitted with the CRC bits. Solution: The polynomial gives us the divisor: x 4 + x 3 + x 2 + 1 11101 Performing XOR repeatedly using the divisor on the message gives us the CRC bits: 1011 1011 1101 1010 1111 0000 XOR 1110 1 000 0000 0000 0000 0000 0101 0011 1101 1010 1111 0000 XOR 0 111 01 00 0000 0000 0000 0000 00 10 0111 1101 1010 1111 0000 XOR 00 11 101 0 0000 0000 0000 0000 000 1 1101 1101 1010 1111 0000 XOR 000 1 1101 0000 0000 0000 0000 0000 0000 1101 1010 1111 0000 XOR 0000 0000 1110 1 000 0000 0000 0000 0000 00 11 0010 1111 0000 XOR 0000 0000 00 11 101 0 0000 0000 0000 0000 0000 1000 1111 0000 XOR 0000 0000 0000 1110 1 000 0000 0000 0000 0000 0 110 0111 0000 XOR 0000 0000 0000 0 111 01 00 0000 0000 0000 0000 000 1 0011 0000 XOR 0000 0000 0000 000 1 1101 0000 0000 0000 0000 0000 1110 0000 XOR 0000 0000 0000 0000 1110 1000 0000 0000 0000 0000 0000 1000 Appending the four-bit CRC to the original message, we get: 1011 1011 1101 1010 1111 1000
Background image of page 2
Page 3 of 7 3) [10+10+10+10] Bob received the following two messages from Alice: a. 1000 1011 1101 1011 0101 b. 1011 1111 0101 In each message, Alice has added either a four-bit checksum or four CRC bits using the polynomial x 4 + x 3 + x 2 + 1. This means the last four bits of the first message i.e. “0101” and the last four bits of the second message i.e. “0101” are
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/05/2010 for the course CIS CIS 3360 taught by Professor Guha during the Spring '10 term at University of Central Florida.

Page1 / 7

CIS3360_HW6_v2_Solution_3-24-10 - Page 1 of 7 CIS 3360...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online