First-Order Equations, Linear Equations- Problem Set

# First-Order Equations, Linear Equations- Problem Set -...

This preview shows pages 1–2. Sign up to view the full content.

1 First-Order Equations: Linear Equations- Problem Set Solve the following linear first-order differential equations. 1. '2 2 2 t yy t e −= Comparing this equation with the general linear first-order equation, () dy pty gt dx += , we can see that, 2 pt = − , 22 t gt te = . Therefore, the integrating factor is: 2 2 p t dt dt t µµ µ ∫∫ =⇒ = = Multiplying both side of the equation by the integrating factor, we get: 3 2' 2 2 2 2 2 ' 2 2 2 2 2 2 2( ) ( ) ( ) 3 tt t t t t t t dt ey ey e t e ey t d t ey C dt −− = = = ⇒= + 3 2 3 t t ye C =+ 2. (1 ) 4 ) ty t y t ++ = + ' 41 ) 4 ) 11 t y t y y = +⇒ + = + + Comparing this equation with the general linear first-order equation, dy dx , we can see that: 2 4 1 t t = + . Therefore, the integrating factor is: ptd t 2 2 4 2ln(1 ) ln(1 ) 2 2 1 ) t dt t e e t + == = = + Multiplying both side of the equation by the integrating factor, we get: 22 ' 2 2 ' 2 2 ) 4 (1 ) 1 ((1 ) ) 1 ) ) ty t t y t t t d t + + + =+⇒ + =+⇒+ = + 1 ) tan ( ) tC + 1 tan ( ) ) y t + = + 3.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## First-Order Equations, Linear Equations- Problem Set -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online