SalasSV_09_03_ex_ans - ANSWERS TO ODD-NUMBERED EXERCISES 25...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ANSWERS TO ODD-NUMBERED EXERCISES 25. center (0, 0) transverse axis 2 vertices ( ± 1, 0) √ foci ( ± 2, 0) asymptotes y = ± x y A-67 27. center (0, 0) transverse axis 6 x y 29. center (0, 0) transverse axis 8 x y vertices ( ± 3, 0) foci ( ± 5, 0) asymptotes y = ± 4 x 3 vertices (0, ±4) foci (0, ±5) asymptotes y = ± 4 x 3 x 31. center (1, 3) transverse axis 6 vertices (4, 3) and (−2, 3) foci (6, 3) and (−4, 3) asymptotes y = ± 4 (x − 1) + 3 3 35. d ( F1 , F2 ) + k = 2(c + a) y (1,3) 33. center (1, 3) transverse axis 4 vertices (1, 5) and (1, 1) √ foci (1, 3 ± 5) asymptotes y = 2x + 1, y = −2x + 5 y (1,3) x x √ 37. 2 π 2 a4 − A2 /π a 39. (5 ± 5 21 √ 5, 0) √ √ √ √√ 41. center (0, 0), vertices (1, 1) and (−1, −1), foci ( 2, 2) and (− 2, − 2), asymptotes x = 0 and y = 0, transverse axis 2 2 √ √ 43. [2 3− ln (2 + 3)]ab 45. 3 47. 4 . 49. E1 is fatter than E2 , more like a circle 5 5 51. The ellipse tends to a line segment of length 2a. 53. x2 /9 + y2 = 1 55. 5 3 57. √ 2 59. The branches of H1 open up less quickly than the branches of H2 . 61. The hyperbola tends to a pair of parallel lines separated by the transverse axis. 63. about 0.25 mile west and 1.46 miles north of point A SECTION 9.3 1. −7. See figure to the right. 17. [1, 1 π 2 9. (0, 3) 11. (1, 0) 13. ( − 3 , 2 3 2 √ 3) 15. (0, −3) 2 1, 1 π 3 + 2nπ ], [ − 1, 3 π 2 + 2nπ ] 19. [3, π + 2nπ ], [ − 3, 2nπ ] 23. [8, 1 π + 2nπ ], [ − 8, 7 π + 2nπ ] 6 6 11 π] 6 –1, 1 π 3 polar axis – 1π √ √ 21. [2 2, 7 π + 2nπ ], [ − 2 2, 3 π + 2nπ ] 4 4 25. 2 2 r1 + r2 − 2r1 r2 cos (θ1 − θ2 ) 2 π] 3 27. (a) [ 1 , 2 1 π 3 (b) [ 1 , 5 π ] 26 (c) [ 1 , 7 π ] 26 4, 5 π 4 29. (a) [2, (b) [2, 5 π] 3 (c) [2, 31. symmetry about the x-axis 33. no symmetry about the coordinate axes; no symmetry about the origin 35. symmetry about the origin 43. θ = π/4 37. r cos θ = 2 39. r 2 sin 2θ = 1 41. r = 4 sin θ 45. r = 1 − cos θ 47. r 2 = sin 2θ √ 53. the parabola y2 = 4(x + 1) 51. the line y = 3x 57. the line y = 2x 63. (x − 59. 3x2 + 4y2 − 8x = 16, ellipse 49. the horizontal line y = 4 55. the circle x2 + y2 = 3x b2 a a2 + b2 ) + ( y − )2 = ; center: 2 2 4 61. y2 = 8x + 16, parabola √ ba d a2 + b 2 , 65. r = , radius: 22 2 2 − cos θ SECTION 9.4 1. 3. 4 5. 7. 3 –π 1 4 ...
View Full Document

This note was uploaded on 10/12/2010 for the course MATH 12345 taught by Professor Smith during the Spring '10 term at University of Houston - Downtown.

Ask a homework question - tutors are online