{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

SalasSV_08_05_ex_ans

# SalasSV_08_05_ex_ans - ANSWERS TO ODD-NUMBERED EXERCISES 37...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ANSWERS TO ODD-NUMBERED EXERCISES 37. Let x = a tan u, dx = a sec2 u du; 39. √ x2 + a2 = a sec u. Then (x2 + a2 )n = a2n sec2n u and the result follows by substitution. 41. 12 rθ 2 1 (2x2 4 A-63 3 3x x tan−1 x + +C + 8 8(x2 + 1) 4(x2 + 1)2 12 r sin θ cos θ + 2 r r cos θ − 1) sin−1 x + 8 [10 3 x√ 1 − x2 + C 4 43. π2 π + 8 4 √ √ ( 2 − 1)a 2), xM = √ ln (1 + 2) y = 3a 8 45. A = r 2 − x2 dx = 47. − 9 2 ln 3] 49. M = ln (1 + √ 2a (2 − 2)a , y= √ √ √ √ 3[ 2 − ln ( 2 + 1)] 3[ 2 − ln ( 2 + 1)] √ 55. (a) Let x = a sec u, dx = a sec u tan u du, x2 − a2 = a tan u. √ √ 51. A = 1 a2 [ 2 − ln ( 2 + 1)]; 2 x= √ (b) Let x = a cosh u, dx = a sinh u, x2 − a2 = a sinh u. √ √ √ 2(3 3 − π ) 5 3 57. (b) ln (2 + 3) − (c) x = √ √ √ , y= √ 2 2 ln (2 + 3) − 3 72[2 ln (2 + 3) − 3] 53. Vy = 2 π a3 , 3 SECTION 8.5 1/5 1/5 1. − x+1 x+6 11. x2 − 2x + 17. 3. 1/4 1/4 x /2 + −2 x−1 x+1 x +1 13. 5. 1/2 3/2 1 + − x x+2 x−1 7. 3/2 9 19/2 − + x−1 x−2 x−3 9. ln x−2 +C x+5 3 + 5 ln |x − 1| − 3 ln |x| + C x 19. 14 43 32 x + x + 6x2 + 32x − + 80 ln|x − 2| + C 4 3 x−2 21. 15. 5 ln |x − 2| − 4 ln |x − 1| + C −1 +C 2(x − 1)2 3 1 1 ln |x − 1| − + ln |x + 1| + C 4 2(x − 1) 4 25. 3 10 1 1 x−2 x ln tan−1 + C − 32 x+2 16 2 23. 1 3 5(1 − x) ln (x2 + 1) + tan−1 x + +C 2 2 2(x2 + 1) 3 x + 4 ln +C x x+1 1 6 1 1 x 2 + 2x + 2 1 ln 2 + tan−1 (x + 1) + tan−1 (x − 1) + C 16 x − 2x + 2 8 8 2 15 27. 29. − 1 ln |x| + 6 37. 1 4 ln |x − 2| − 39. ln |x + 3| + C 31. ln ( 125 ) 108 33. ln ( 27 ) − 2 4 35. ln sin θ − 4 +C sin θ + 2 ln ln t − 2 +C ln t + 2 43. u 1 a = 1− a + bu b a + bu 41. u2 ( a 1 (−b/a2 ) (1/a) ( b 2 /a2 ) = + 2+ + bu) u u a + bu v−1 dv, where v = a2 − u2 1 −b/(ad − bc) d /(ad − bc) = + (a + bu)(c + du) a + bu c + du 47. (a) Exercise 44 53. (a) (b) x = a sin u, dx = a cos u du 55. (b) 3 ln 7 − 5 ln 3 57. (b) 11 − ln 12 45. u du = − 1 2 a2 − u 2 π 4 49. (a) ln 7 (b) π (4 − √ 51. x = (2 ln 2)/π , 7) y = (π + 2)/4π 2 5 4 1 − 2+ − x x x+1 (x + 1)3 1 3 4 (b) 2 + − x +4 x+3 x−3 2x − 1 3 (c) 2 − x + 2x + 4 x SECTION 8.6 √ √ 1. −2( x + ln |1 − x|) + C 7. 2 (x 5 √ √ 3. 2 ln ( 1 + ex − 1) − x + 2 1 + ex + C 9. − 17. 2 (x 3 5. 2 (1 5 + x)5/2 − 2 (1 + x)3/2 + C 3 √ √ 13. x + 4 x − 1 + 4 ln | x − 1 − 1| + C 1 (4x 48 − 1)5/2 + 2(x − 1)3/2 + C 1 + 2x2 +C 4(1 + x2 )2 √ − 8) x + 4 + C √ √ 11. x + 2 x + 2 ln | x − 1| + C 19. 1 (4x 16 √ 15. 2 ln ( 1 + ex − 1) − x + C 23. −ln 1 − tan x +C 2 + 1)1/2 + 1 (4x + 1)−1/2 − 8 + 1)−3/2 + C 21. 4b + 2ax +C √ a2 ax + b 2 1 x 25. √ tan−1 √ (2 tan + 1) + C 2 3 3 31. 4 5 27. 1 x x 1 ln tan − tan2 + C 2 2 4 2 2 3 29. ln 2 1 +C − 1 + sin x 1 + tan (x/2) + 2 tan−1 2 33. 2 + 4 ln 35. ln √ 3−1 √ 3 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online