SalasSV_08_08_ex

# X1 2 y x 152 22 y x1 21 y find the particular

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: x 2 /2 , 2 y = 0. x+1 2 y = (x + 1)5/2 . 22. y + x+1 21. y + Find the particular solution determined by the initial condition. 23. y + y = x, 24. y − y = e , 2x 1 1 + y = y ; y1 (x) = x , y2 ( x ) = , e +1 C ex + 1 + 4y = 0; y1 (x) = 2 sin 2x, y2 (x) = 2 cos x. − 4y = 0; y1 (x) = e2x , y2 (x) = C sinh 2x, − 2y − 3y = 7e3x ; y1 (x) = e−x + 2e3x , y2 (x) = 7 xe3x . 4 8. xy − 2y = −x. 10. y − y = −2 e−x . cos x 12. xy + 2y = . x 14. y + y = 2 + 2x. 16. y − y = ex . y(0) = 1. y(1) = 1. Find the general solution. 7. y − 2y = 1. 9. 2y + 5y = 2. 11. y − 2y = 1 − 2x. 13. xy − 4y = −2nx. 15. y − ex y = 0. 17. (1 + ex ) y + y = 1. 18. xy + y = (1 + x) ex . 19. y + 2xy = x e−x . 2 1 , y(0) = e. 1 + ex 1 26. y + y = , y(0) = e. 1 + 2 ex 25. y + y = 27. xy − 2y = x3 ex , 28. xy + 2y = x e , −x y(1) = 0. y(1) = −1. 20. xy − y = 2x ln x. 29. Find all functions that satisfy the differential equation y − y = y − y . HINT: Set z = y − y. 30. Find the general solution of y + ry = 0 on [0, ∞) where r is a constant. (a)...
View Full Document

## This note was uploaded on 10/12/2010 for the course MATH 12345 taught by Professor Smith during the Spring '10 term at University of Houston - Downtown.

Ask a homework question - tutors are online