SalasSV_10_06_ex_ans

# SalasSV_10_06_ex_ans - A-74 ANSWERS TO ODD-NUMBERED...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: A-74 ANSWERS TO ODD-NUMBERED EXERCISES ∼ 51. The numerical work suggests L = 1. Justiﬁcation: Set f (x) = sin x − x2 . Note that f (0) = 0 and for x close to 0, f (x) = cos x − 2x > 0. Therefore sin x − x2 > 0 for x close to 0 and sin (1/n) − 1/n2 > 0 for n large. Thus, for n large, 1 1 1 < sin < n2 n n ↑ 1 n2 1 n1/n 1/n | sin x| ≤ |x| for all x 1/n 1 < sin n < sin 1 n < < 1 n 1 . n1/n 1/n 2 1/n As n → ∞ both bounds tend to 1 and therefore the middle term also tends to 1. 53. (a) a3 2 a4 3 a5 5 a6 8 a7 13 a8 21 a9 34 a10 55 (b) r1 1 r2 2 r3 1.5 r4 1.6667 r5 1.6000 r6 1.625 (c) L = √ 1+ 5 ∼ = 1. 618033989 2 SECTION 10.5 1. 0 3. 1 23. 1 3 5. 1 2 7. ln 2 27. 4 x→0 9. 29. 1 2 1 4 11. 2 31. 1 2 13. 33. 1 1+π 1−π 35. 1 15. 1 2 17. π 39. 1 e 2 19. − 1 2 41. 1 21. −2 √ 6 25. − 1 8 37. 0 47. − 43. lim (2 + x + sin x) = 0, lim (x3 + x − cos x) = 0 x→0 45. a = ± 4, b = 1 49. f (0) 51. (a) 1 (b) − 1 3 53. 3 4 55. (a) f (x) → ∞ as x → ± ∞ (b) 10 57. (b) ln 2 ∼ 0. 6931 = SECTION 10.6 1. ∞ 3. −1 27. e3 29. e 5. ∞ 31. 0 7. 1 5 9. 1 35. 0 11. 0 37. 1 13. ∞ 39. 1 15. 1 3 17. e 43. 1 19. 1 45. 0 21. 1 2 23. 0 25. 1 33. − 1 2 41. 0 47. y-axis vertical asymptote y 49. x-axis horizontal asymptote y 51. x-axis horizontal asymptote y y = x2 x (–1, – e ) 1 (2, 4 e –2) x x 53. √ b2 b x 2 − a2 + x x − a2 − x = √ a a x 2 − a2 + x x→0+ b −ab →0 ( x 2 − a2 − x ) = √ a x 2 − a2 + x as x → ∞ 55. example : f (x) = x2 + (x − 1)(x − 2) x3 57. lim cos x = 0 59. (a) Let S be the set of positive integers for which the statement is true. Since lim lnx = 0, 1 ∈ S . Assume that k ∈ S . By L opital’s rule, ’H ˆ x (since k ∈ S ). x→∞ x→∞ lim (ln x)k +1 ∗ (k + 1)(ln x)k = lim =0 x→∞ x x Thus k + 1 ∈ S , and S is the set of positive integers. (b) Choose any positive number α . Let k − 1 and k be positive integers such that k − 1 ≤ α ≤ k . Then, for x > e, (ln x)k −1 (ln x)α (ln x)k ≤ ≤ x x x and the result follows by the pinching theorem. ANSWERS TO ODD-NUMBERED EXERCISES 61. The limit has the form 1∞ ; use L opital’s rule ’H ˆ 63. (a) Ab = 1 − (1 + b) e−b (b) xb = b→∞ A-75 2 − (2 + 2b + b2 )e−b , 1 − (1 + b)e−b b→∞ yb = b→∞ 1 4 − 1 (1 + 2b + 2b2 )e−2b 4 2[1 − (1 + b)e−b ] 1 8 (c) lim Ab = 1; x→0+ lim xb = 2, lim yb = 65. lim (1 + x2 )1/x = 1. 67. lim g (x) = −5/3. x→∞ SECTION 10.7 1. 1 23. 4 3. 1 π 4 5. diverges 7. 6 9. 1 π 2 11. 2 31. 1 2 13. diverges 33. 2 e − 2 15. − 1 4 17. π 1 32 π 16 π 16 19. diverges 37. π 2 21. ln 2 39. π 25. diverges 27. diverges 29. diverges 35. (a) converges: (b) converges: (c) converges: (d) diverges −1 41. surface area = 1 ∞ 2π 1 x 1+ 1 dx = 2π x4 1 0 ∞ 1 √ x4 + 1 dx > 2π x3 2 1 0 ∞ 1 1 dx = ∞ x 43. (a) y (b) 2 (c) V = π 1 √ x dx = π 1 dx, diverges x 45. (a) y (b) 1 (c) 1 π 2 (d) 2π √ √ (e) π [ 2 + ln(1 + 2)] x 1 x 2 47. (a) The interval [0, 1] causes no problem. For x ≥ 1, e−x ≤ e−x and 1 ∞ e−x dx is ﬁnite. (b) Vy = 0 ∞ 2π x e−x dx = π ∞ 4 3 2 49. (a) y (b) 51. converges by comparison with 0 (c) 2π (d) 8 π 7 1 x dx x3/2 53. diverges since for x large the integrand is greater than ∞ 1 and x ∞ 1 b 0 1 dx diverges x =∞ ∞ 55. converges by comparison with 1 dx x3/2 57. (a) 0 2x dx = lim b→∞ 1 + x2 b b 0 2x dx = lim ln (1 + x2 ) b→∞ 1 + x2 b −b (b) lim b→∞ −b 2x dx = lim ln (1 + x2 ) b→∞ 1 + x2 = lim b→∞ ln (1 + b2 ) − ln (1 + b2 ) = lim 0 = 0 b→∞ √ 59. L = (a 1 + c2 / c) ecθ1 65. f (x) ≥ 0 for all x and 69. Observe that F (t ) = result follows. 1 t ∞ −∞ 61. 1 ; dom (F ) = (0, ∞) s ∞ 0 63. s ; dom (F ) = (0, ∞) s2 + 4 67. 1 k n 1 f (x) dx = 6x dx = 1 (1 + 3x2 )2 f (x) dx is continuous and increasing, that an = f (x) dx is increasing, and that an ≤ 1 t f (x) dx ≤ an+1 for t ∈ [n, n + 1] . The ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online