SalasSV_08_07_ex_ans

# SalasSV_08_07_ex_ans - A-64 ANSWERS TO ODD-NUMBERED...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: A-64 ANSWERS TO ODD-NUMBERED EXERCISES 1 dx = 2 cos x du and the result follows. 1 − u2 du where u = cos x. The result follows. 1 − u2 x 37. Let u = tan . Then 2 39. csc x dx = sin x dx = sin2 x x +C 2 43. sin x dx = − 1 − cos2 x −2 +C 1 + tanh (x/2) 41. 2 tan−1 tanh SECTION 8.7 1. (a) 506 (b) 650 5. (a) π ∼ 3. 1312 = (c) 572 (d) 578 (e) 576 3. (a) 1.394 (b) 1.7915 (b) 0.9122 (c) 1.8090 (c) 1.1776 (d) 1.1533 (e) 1.1614 (b) π ∼ 3. 1416 = 7. (a) 1.8440 9. (a) 0.8818 (b) 0.8821 11. Such a curve passes through the three points (a1 , b1 ), (a2 , b2 ), (a3 , b3 ) iff b1 = a2 A + a1 B + C , 1 which happens iff A= b1 (a2 − a3 ) − b2 (a1 − a3 ) + b3 (a1 − a2 ) , (a1 − a3 )(a1 − a2 )(a2 − a3 ) B=− b1 (a2 − a2 ) − b2 (a2 − a2 ) + b3 (a2 − a2 ) 2 3 1 3 1 2 , (a1 − a3 )(a1 − a2 )(a2 − a3 ) b2 = a2 A + a2 B + C , 2 b3 = a2 A + a3 B + C , 3 C= a2 (a2 b3 − a3 b2 ) − a2 (a1 b3 − a3 b1 ) + a2 (a1 b2 − a2 b1 ) 1 2 3 . (a1 − a3 )(a1 − a2 )(a2 − a3 ) (b) n ≥ 2 15. (a) n ≥ 238 (b) n ≥ 10 17. (a) n ≥ 51 (b) n ≥ 4 19. (a) n ≥ 37 (b) n ≥ 3 13. (a) n ≥ 8 21. (a) 78 (b) 7 1 0 23. f (4) (x) = 0 for all x; therefore by (8.7.3) the theoretical error is zero 1 1 3 T −= = E2 8 3 24 (b) S1 − 0 b a 1 25. (a) T2 − x2 dx = x4 dx = 1 1 5 S −= = E1 24 5 120 29. (a) 49. 4578 (b) 1280.56 31. error ≤ 4. 01 × 10−7 27. Using the hint, Mn = area ABCD = area AEFD ≤ 1 f (x) dx ≤ Tn . 33. 0 4 dx = 4 tan−1 x 1 + x2 1 0 =4 π 4 −0 =π 3. 14159 (a) 3.14141 (b) 3.14159 SECTION 8.8 1. y1 is; y2 is not 11. y = x + C e2x 23. y = 2 e−x + x − 1 3. y1 and y2 are solutions 13. y = 2 3 5. y1 and y2 are solutions 15. y = C ee x 7. y = − 1 + C e2x 2 9. y = 2 2 5 + C e−(5/2)x 21. y = C (x + 1)−2 nx + Cx4 17. y = 1 + C (e−x + 1) 27. y = x2 (ex − e) 19. y = e−x 12 x 2 +C 25. y = e−x ln(1 + ex ) + e − ln 2 29. y = C1 ex + C2 x ex 41. (a) 200 ( 4 )t /5 5 (b) 200 2 ( 4 )t /25 5 35. T (1) ∼ 40. 10◦ ; 1. 62 min = dP = k (M − P ) dt (b) P (t ) = M (1 − e−0.0357t ) (c) 65 days 37. (a) v(t ) = 32 (1 − e−kt ) k (b) 1 − e−kt < 1; e−kt → 0 as t → ∞ 39. (a) i(t ) = E [1 − e−(R/L)t ] R E (b) i(t ) → (amps) as t → ∞ R L (c) t = ln 10 seconds R 43. (a) liters 45. (a) P (t ) = 1000 e( sin 2π t )/π (b) P (t ) = 2000 e( sin 2π t )/π − 1000 SECTION 8.9 1. y = C e−(1/2) cos (2x+3) 9. ln | y + 1| + 3. x4 + 2 =C y2 5. y sin y + cos y = − cos 1 x +C √ 7. e−y = ex − xex + C 1 − x2 15. y + ln | y| = x3 −x−5 3 1 = ln | ln x| + C y+1 11. y2 = C ( ln x)2 − 1 13. sin−1 y = 1 − ...
View Full Document

## This note was uploaded on 10/12/2010 for the course MATH 12345 taught by Professor Smith during the Spring '10 term at University of Houston - Downtown.

Ask a homework question - tutors are online