SalasSV_07_01_ex_ans - ANSWERS TO ODD-NUMBERED EXERCISES...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ANSWERS TO ODD-NUMBERED EXERCISES 19. ( 10 , 3 40 ) 21 A-53 21. (2, 4) 23. (− 3 , 0) 5 25. (a) (0, 0) (b) 14 14 , 5π 5π 1 π R3 3 16 ) 35 (c) 0, 14 5π 27. V = π ab(2c + (b) √ a2 + b 2 ) 29. (a) ( 2 a, 1 h) 3 3 (b) ( 2 a + 1 b, 1 h) 3 3 3 (c) ( 1 a + 1 b, 1 h) 3 3 3 35. (a) A = 1 2 31. (a) (b) ( 16 , 35 sin2 θ (2 sin θ + cos θ ) (c) V = 16 π 35 2R sin θ (2 sin θ + cos θ ) 3(π sin θ + 2 cos θ ) 33. An annular region; see Exercise 25(a). 37. (a) A = 250 3 (d) V = 16 π 35 (b) (− 9 , 8 290 ) 21 ∼ (−1. 125, 13. 8095) = SECTION 6.5 1. 817. 5 ft-lb 3. 1 (64 3 − 73/2 ) ft-lb 5. 35π 2 1 − newton-meters 72 4 15. (a) 7. 625 ft-lb ft-lb 9. (a) 25-ft-lb (b) 225 4 ft-lb ft-lb 11. 1.95 ft 13. (a) (6480π + 8640) ft-lb 17. (a) 384π σ newton-meters 25. (a) 1 σ l2 2 (b) (15, 120π + 8640) ft-lb (b) 480π σ newton-meters ft-lb 27. 20,800 ft-lb 11 π r 2 h2 σ 192 11 (b) ( 192 π r 2 h2 σ + 7 π r 2 hk σ ) 24 19. 48,000 ft-lb 21. (a) 20,000 ft-lb (b) 30,000 ft-lb 23. 788 ft-lb ft-lb (b) 32 lσ 2 29. Let λ(x) be the mass density of the chain at the point x units above the ground. Let g be the gravitational constant. The work done to pull the chain to the top of the building is given by W= 0 H (H − x)g λ(x) dx = Hg 0 H λ(x) dx − g 0 H xλ(x) dx = HgM − g xM = (H − x)gM = (weight of chain) × (distance from center of mass to top of building). 31. Total weight 400 lbs.; center of mass (chain plus bucket): x = 25 ft from ground; W = 400(100 − 25) = 400(75) = 30, 000 ft-lbs . 33. W = a b ma dx = a b mv dv = 1212 mv − mv 2b2a 35. 94.8 ft-lb 37. 9. 714 × 109 ft-lb 39. (a) 670 sec or 11 min, 10 sec (b) 1116 sec or 18 min, 36 sec SECTION 6.6 1. 9000 lb 3. 1. 437 × 108 newtons (b) 41,250 lb 5. 1. 7052 × 106 newtons 7. 2160 lb 9. 8000 3 √ 2 lb 11. 333.33 lb 13. 2560 lb 15. (a) 41,250 lb 17. (a) 297,267 newtons (b) 39,200 newtons at the shallow end; 352,800 newtons at the deep end 19. 2. 21749 × 106 newtons 21. F = σ xA where A is the area of the submerged surface and x is the depth of its centroid. CHAPTER 7 SECTION 7.1 1. f −1 (x) = 1 (x − 3) 5 3. not one-to-one 5. f −1 (x) = (x − 1)1/5 7. f −1 (x) = [ 1 (x − 1)]1/3 3 9. f −1 (x) = 1 − x1/3 11. f −1 (x) = (x − 2)1/3 − 1 19. f −1 (x) = 1/x 29. 13. f −1 (x) = x5/3 15. f −1 (x) = 1 (2 − x1/3 ) 3 1−x x 1/3 17. f −1 (x) = sin−1 (x) (to be studied in Section 7.7) 27. they are equal 21. not one-to-one 23. f −1 (x) = 25. f −1 (x) = (2 − x)/(x − 1) 33. (a) k ≥ 1 √ √ (b) − 3 ≤ k ≤ 3 y 31. y x x 35. f (x) = 3x2 ≥ 0 on ( − ∞, ∞), f (x) = 0 only at x = 0; ( f −1 ) (9) = 1 12 1 37. f (x) = 1 + √ > 0 on (0, ∞); ( f −1 ) (8) = x 2 3 A-54 ANSWERS TO ODD-NUMBERED EXERCISES ( f −1 ) ( π ) = 1 1 6 39. f (x) = 2 − sin x > 0 on (−∞, ∞); 43. f (x) = 3x2 + 49. (a) f (x) = √ 41. f (x) = sec2 x > 0 on (−π/2, π/2); ( f −1 ) ( 3) = 45. ( f −1 ) (x) = 1 x 1 47. ( f −1 ) (x) = √ 1 − x2 51. (a) f (x) = (b) g (x) = 0 √ 1 + x2 > 0 1 4 3 > 0 on (0, ∞); ( f −1 ) (2) = x4 iff ad − bc =0 (cx + d )2 ad − bc = 0 (b) f −1 (x) = dx − b a − cx 1 (b) ( f −1 ) (0) = √ 5 1 g (x ) 53. (a) g (t ) ≥ 0 or g (t ) ≤ 0 on [a, b], with g (t ) = 0 only at “isolated" points. 55. (a) g (x) = 1 f ( g (x))g (x) f ( g (x)) =− ; g (x ) = − f ( g (x)) [ f ( g (x))]2 [ f ( g (x))]3 (c) ( f −1 ) (x) = (b) If f is increasing, then the graphs of f and g have opposite concavity; if f is decreasing, then the graphs of f and g have the same concavity. 1 57. ( f −1 ) (x) = √ . 1 − x2 65. y f 59. f −1 (x) = −1 + (2 − x)1/3 67. 61. f −1 (x) = x2 − 8x + 25 , x≥4 9 63. f −1 (x) = 1−x 1+x y 4 2 f –1 0 2 x –4 –4 π 4 π 4 x –4 SECTION 7.2 1. ln 2 + ln 10 ∼ 2. 99 = 3. 2 ln 4 − ln 10 ∼ 0. 48 = 5. −ln 10 ∼ −2. 30 = 7. ln 8 + ln 9 − ln 10 ∼ 1. 98 = 9. 1 2 area = In n m mn x 11. y y= 1 x ln 2 ∼ 0. 35 = 13. 0.406 15. (a) 1.65 (b) 1.57 (c) 1.71 17. x = e2 19. x = 1, e2 21. x = 1 23. lim x→1 d (ln x) ln x = x−1 dx x =1 =1 25. (a) P = {1, 2, . . . , n} is a regular partition of [1, n]; Lf (P ) = n 1 1 1 1 1 1 + + ··· + < dt = ln n < 1 + + · · · + = Uf (P ). 2 3 n 2 n−1 1t n 1 1 1 (b) Sum of shaded areas = Vf (P ) − dt = 1 + + · · · + − ln n. 2 n−1 1t 1 (c) Connect the points (1,1), (2, 1 ),. . . , n, by straight-line segments. The sum of the areas of the triangles that are formed is 2 n 1 ·1 2 so 1− 1 2 + 1 1 − 2 3 + ··· + 1 1 − n−1 n = 1 1 1− , 2 n 1 1 1− 2 n The sum of the areas of the indicated rectangles is 1 1− 1 2 + 1 1 − 2 3 + ··· + < γ. 1 1 − n−1 n =1− 1 , n ...
View Full Document

This note was uploaded on 10/12/2010 for the course MATH 12345 taught by Professor Smith during the Spring '10 term at University of Houston - Downtown.

Ask a homework question - tutors are online