SalasSV_07_08_ex - 7.8 THE HYPERBOLIC SINE AND COSINE 439...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
7.8 THE HYPERBOLIC SINE AND COSINE ± 439 EXERCISES 7.8 Differentiate the function. 1. y = sinh x 2 . 2. y = cosh ( x + a ). 3. y = cosh ax . 4. y = (sinh ax )( cosh ax ). 5. y = sinh x cosh x 1 . 6. y = sinh x x . 7. y = a sinh bx b cosh ax . 8. y = e x ( cosh x + sinh x ). 9. y = ln | sinh ax | . 10. y = ln | 1 cosh ax | . 11. y = sinh ( e 2 x ). 12. y = cosh (ln x 3 ). 13. y = e x cosh 2 x . 14. y = tan 1 (sinh x ). 15. y = ln ( cosh x ). 16. y = ln (sinh x ). 17. y = ( sinh x ) x . 18. y = x cosh x . Verify the identity. 19. cosh 2 t sinh 2 t = 1. 20. sinh( t + s ) = sinh t cosh s + cosh t sinh s . 21. cosh( t + s ) = cosh t cosh s + sinh t sinh s . 22. sinh 2 t = 2 sinh t cosh t . 23. cosh 2 t = cosh 2 t + sinh 2 t = 2 cosh 2 t 1 = 2 sinh 2 t + 1. 24. cosh( t ) = cosh t ; the hyperbolic cosine function is even. 25. sinh( t ) =− sinh t ; the hyperbolic sine function is odd. Find the absolute extreme values.
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/12/2010 for the course MATH 12345 taught by Professor Smith during the Spring '10 term at University of Houston - Downtown.

Ask a homework question - tutors are online