{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

SalasSV_08_06_ex_ans

# SalasSV_08_06_ex_ans - ANSWERS TO ODD-NUMBERED EXERCISES 37...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ANSWERS TO ODD-NUMBERED EXERCISES 37. Let x = a tan u, dx = a sec2 u du; 39. √ x2 + a2 = a sec u. Then (x2 + a2 )n = a2n sec2n u and the result follows by substitution. 41. 12 rθ 2 1 (2x2 4 A-63 3 3x x tan−1 x + +C + 8 8(x2 + 1) 4(x2 + 1)2 12 r sin θ cos θ + 2 r r cos θ − 1) sin−1 x + 8 [10 3 x√ 1 − x2 + C 4 43. π2 π + 8 4 √ √ ( 2 − 1)a 2), xM = √ ln (1 + 2) y = 3a 8 45. A = r 2 − x2 dx = 47. − 9 2 ln 3] 49. M = ln (1 + √ 2a (2 − 2)a , y= √ √ √ √ 3[ 2 − ln ( 2 + 1)] 3[ 2 − ln ( 2 + 1)] √ 55. (a) Let x = a sec u, dx = a sec u tan u du, x2 − a2 = a tan u. √ √ 51. A = 1 a2 [ 2 − ln ( 2 + 1)]; 2 x= √ (b) Let x = a cosh u, dx = a sinh u, x2 − a2 = a sinh u. √ √ √ 2(3 3 − π ) 5 3 57. (b) ln (2 + 3) − (c) x = √ √ √ , y= √ 2 2 ln (2 + 3) − 3 72[2 ln (2 + 3) − 3] 53. Vy = 2 π a3 , 3 SECTION 8.5 1/5 1/5 1. − x+1 x+6 11. x2 − 2x + 17. 3. 1/4 1/4 x /2 + −2 x−1 x+1 x +1 13. 5. 1/2 3/2 1 + − x x+2 x−1 7. 3/2 9 19/2 − + x−1 x−2 x−3 9. ln x−2 +C x+5 3 + 5 ln |x − 1| − 3 ln |x| + C x 19. 14 43 32 x + x + 6x2 + 32x − + 80 ln|x − 2| + C 4 3 x−2 21. 15. 5 ln |x − 2| − 4 ln |x − 1| + C −1 +C 2(x − 1)2 3 1 1 ln |x − 1| − + ln |x + 1| + C 4 2(x − 1) 4 25. 3 10 1 1 x−2 x ln tan−1 + C − 32 x+2 16 2 23. 1 3 5(1 − x) ln (x2 + 1) + tan−1 x + +C 2 2 2(x2 + 1) 3 x + 4 ln +C x x+1 1 6 1 1 x 2 + 2x + 2 1 ln 2 + tan−1 (x + 1) + tan−1 (x − 1) + C 16 x − 2x + 2 8 8 2 15 27. 29. − 1 ln |x| + 6 37. 1 4 ln |x − 2| − 39. ln |x + 3| + C 31. ln ( 125 ) 108 33. ln ( 27 ) − 2 4 35. ln sin θ − 4 +C sin θ + 2 ln ln t − 2 +C ln t + 2 43. u 1 a = 1− a + bu b a + bu 41. u2 ( a 1 (−b/a2 ) (1/a) ( b 2 /a2 ) = + 2+ + bu) u u a + bu v−1 dv, where v = a2 − u2 1 −b/(ad − bc) d /(ad − bc) = + (a + bu)(c + du) a + bu c + du 47. (a) Exercise 44 53. (a) (b) x = a sin u, dx = a cos u du 55. (b) 3 ln 7 − 5 ln 3 57. (b) 11 − ln 12 45. u du = − 1 2 a2 − u 2 π 4 49. (a) ln 7 (b) π (4 − √ 51. x = (2 ln 2)/π , 7) y = (π + 2)/4π 2 5 4 1 − 2+ − x x x+1 (x + 1)3 1 3 4 (b) 2 + − x +4 x+3 x−3 2x − 1 3 (c) 2 − x + 2x + 4 x SECTION 8.6 √ √ 1. −2( x + ln |1 − x|) + C 7. 2 (x 5 √ √ 3. 2 ln ( 1 + ex − 1) − x + 2 1 + ex + C 9. − 17. 2 (x 3 5. 2 (1 5 + x)5/2 − 2 (1 + x)3/2 + C 3 √ √ 13. x + 4 x − 1 + 4 ln | x − 1 − 1| + C 1 (4x 48 − 1)5/2 + 2(x − 1)3/2 + C 1 + 2x2 +C 4(1 + x2 )2 √ − 8) x + 4 + C √ √ 11. x + 2 x + 2 ln | x − 1| + C 19. 1 (4x 16 √ 15. 2 ln ( 1 + ex − 1) − x + C 23. −ln 1 − tan x +C 2 + 1)1/2 + 1 (4x + 1)−1/2 − 8 + 1)−3/2 + C 21. 4b + 2ax +C √ a2 ax + b 2 1 x 25. √ tan−1 √ (2 tan + 1) + C 2 3 3 31. 4 5 27. 1 x x 1 ln tan − tan2 + C 2 2 4 2 2 3 29. ln 2 1 +C − 1 + sin x 1 + tan (x/2) + 2 tan−1 2 33. 2 + 4 ln 35. ln √ 3−1 √ 3 A-64 ANSWERS TO ODD-NUMBERED EXERCISES 1 dx = 2 cos x du and the result follows. 1 − u2 du where u = cos x. The result follows. 1 − u2 x 37. Let u = tan . Then 2 39. csc x dx = sin x dx = sin2 x x +C 2 43. sin x dx = − 1 − cos2 x −2 +C 1 + tanh (x/2) 41. 2 tan−1 tanh SECTION 8.7 1. (a) 506 (b) 650 5. (a) π ∼ 3. 1312 = (c) 572 (d) 578 (e) 576 3. (a) 1.394 (b) 1.7915 (b) 0.9122 (c) 1.8090 (c) 1.1776 (d) 1.1533 (e) 1.1614 (b) π ∼ 3. 1416 = 7. (a) 1.8440 9. (a) 0.8818 (b) 0.8821 11. Such a curve passes through the three points (a1 , b1 ), (a2 , b2 ), (a3 , b3 ) iff b1 = a2 A + a1 B + C , 1 which happens iff A= b1 (a2 − a3 ) − b2 (a1 − a3 ) + b3 (a1 − a2 ) , (a1 − a3 )(a1 − a2 )(a2 − a3 ) B=− b1 (a2 − a2 ) − b2 (a2 − a2 ) + b3 (a2 − a2 ) 2 3 1 3 1 2 , (a1 − a3 )(a1 − a2 )(a2 − a3 ) b2 = a2 A + a2 B + C , 2 b3 = a2 A + a3 B + C , 3 C= a2 (a2 b3 − a3 b2 ) − a2 (a1 b3 − a3 b1 ) + a2 (a1 b2 − a2 b1 ) 1 2 3 . (a1 − a3 )(a1 − a2 )(a2 − a3 ) (b) n ≥ 2 15. (a) n ≥ 238 (b) n ≥ 10 17. (a) n ≥ 51 (b) n ≥ 4 19. (a) n ≥ 37 (b) n ≥ 3 13. (a) n ≥ 8 21. (a) 78 (b) 7 1 0 23. f (4) (x) = 0 for all x; therefore by (8.7.3) the theoretical error is zero 1 1 3 T −= = E2 8 3 24 (b) S1 − 0 b a 1 25. (a) T2 − x2 dx = x4 dx = 1 1 5 S −= = E1 24 5 120 29. (a) 49. 4578 (b) 1280.56 31. error ≤ 4. 01 × 10−7 27. Using the hint, Mn = area ABCD = area AEFD ≤ 1 f (x) dx ≤ Tn . 33. 0 4 dx = 4 tan−1 x 1 + x2 1 0 =4 π 4 −0 =π 3. 14159 (a) 3.14141 (b) 3.14159 SECTION 8.8 1. y1 is; y2 is not 11. y = x + C e2x 23. y = 2 e−x + x − 1 3. y1 and y2 are solutions 13. y = 2 3 5. y1 and y2 are solutions 15. y = C ee x 7. y = − 1 + C e2x 2 9. y = 2 2 5 + C e−(5/2)x 21. y = C (x + 1)−2 nx + Cx4 17. y = 1 + C (e−x + 1) 27. y = x2 (ex − e) 19. y = e−x 12 x 2 +C 25. y = e−x ln(1 + ex ) + e − ln 2 29. y = C1 ex + C2 x ex 41. (a) 200 ( 4 )t /5 5 (b) 200 2 ( 4 )t /25 5 35. T (1) ∼ 40. 10◦ ; 1. 62 min = dP = k (M − P ) dt (b) P (t ) = M (1 − e−0.0357t ) (c) 65 days 37. (a) v(t ) = 32 (1 − e−kt ) k (b) 1 − e−kt < 1; e−kt → 0 as t → ∞ 39. (a) i(t ) = E [1 − e−(R/L)t ] R E (b) i(t ) → (amps) as t → ∞ R L (c) t = ln 10 seconds R 43. (a) liters 45. (a) P (t ) = 1000 e( sin 2π t )/π (b) P (t ) = 2000 e( sin 2π t )/π − 1000 SECTION 8.9 1. y = C e−(1/2) cos (2x+3) 9. ln | y + 1| + 3. x4 + 2 =C y2 5. y sin y + cos y = − cos 1 x +C √ 7. e−y = ex − xex + C 1 − x2 15. y + ln | y| = x3 −x−5 3 1 = ln | ln x| + C y+1 11. y2 = C ( ln x)2 − 1 13. sin−1 y = 1 − ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern