SalasSV_09_07_ex - 9.7 TANGENTS TO CURVES GIVEN...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 9.7 TANGENTS TO CURVES GIVEN PARAMETRICALLY 565 Example 5 is vertical. Find the points of the cardioid r = 1 − cos θ at which the tangent line SOLUTION Since the cosine function has period 2π , we need only concern ourselves with θ in [0, 2π ). The parametric equations for the curve are: x(θ ) = (1 − cos θ ) cos θ , Differentiating and simplifying, we find that x (θ ) = (2 cos θ − 1) sin θ , y(θ ) = (1 − cos θ ) sin θ . [2, π ] [, ] 1 2 π 3 polar axis y (θ ) = (1 − cos θ )(1 + 2 cos θ ). [, ] 1 5π 23 The only numbers in the interval [0, 2π ) at which x is zero and y is not zero are 1 π , π , 3 and 5 π . The tangent line is vertical at 3 [ 1 , 5 π ]. 23 √ √ These points have rectangular coordinates ( 1 , 1 3), (−2, 0), ( 1 , − 1 3). See 44 4 4 Figure 9.7.6 EXERCISES 9.7 Find an equation in x and y for the line tangent to the curve. 1. x(t ) = t , 2. x(t ) = t , 2 [ 1 , 1 π ], 23 [2, π ], Figure 9.7.6 y(t ) = t 3 − 1; y(t ) = t + 5; y(t ) = cos πt ; y (t ) = t ; 4 t = 1. t = 2. t = 0. t = 1. t = 1. 2 t = 1. t = 1π. 4 t = 0. Find the points (x, y) at which the curve has: (a) a horizontal tangent; (b) a vertical tangent. Then sketch the curve. 19. 20. 21. 22. 23. 24. 25. 26. 27. x(t ) = 3t − t 3 , y(t ) = t + 1. x(t ) = t 2 − 2t , y(t ) = t 3 − 12t . x(t ) = 3 − 4 sin t , y(t ) = 4 + 3 cos t . x(t ) = sin 2t , y(t ) = sin t . x(t ) = t 2 − 2t , y(t ) = t 3 − 3t 2 + 2t . x(t ) = 2 − 5 cos t , y(t ) = 3 + sin t . x(t ) = cos t , y(t ) = sin 2t . x(t ) = 3 + 2 sin t , y(t ) = 2 + 5 sin t . Find the tangent(s) to the curve x(t ) = −t + 2 cos 1 πt , 4 at the point (2, 0). 28. Find the tangent(s) to the curve x (t ) = t 3 − t , y(t ) = t sin 1 πt 2 y(t ) = t 4 − 4t 2 3. x(t ) = 2t , 5. x(t ) = t 2 , 6. x(t ) = 1/t , 3 4. x(t ) = 2t − 1, y(t ) = (2 − t )2 ; y(t ) = t 2 + 1; y(t ) = sin t 3 7. x(t ) = cos t , 8. x(t ) = et , y(t ) = 3e−t ; Find an equation in x and y for the line tangent to the polar curve. 9. r = 4 − 2 sin θ , 10. r = 4 cos 2θ , 4 , 5 − cos θ 5 12. r = , 4 − cos θ 11. r = 13. r = 14. r = θ = 0. θ = 1π. 2 θ = 1π. 2 θ = 1π. 6 θ = 0. θ = 1π. 2 sin θ − cos θ , sin θ + cos θ sin θ + cos θ , sin θ − cos θ y = y (t ) at the point (0, 1). 29. Let P = [r1 , θ ] be a point on a polar curve r = f (θ ) as in the figure. Show that, if f (θ1 ) = 0 but f (θ1 ) = 0, Parametrize the curve by a pair of differentiable functions x = x(t ), with [x (t )]2 + [ y (t )]2 = 0. r1 P Sketch the curve and determine the tangent line at the origin by the method of this section. 15. y = x3 . 17. y5 = x3 . 16. x = y3 . 18. y3 = x5 . θ1 O polar axis 566 CHAPTER 9 THE CONIC SECTIONS; POLAR COORDINATES; PARAMETRIC EQUATIONS then the tangent line at P is perpendicular to the line segment OP . 30. If 0 < a < 1, the polar curve r = a − cos θ is a limaçon with an inner loop. Choose a so that the curve will intersect itself at the pole in a right angle. In Exercises 31–35, verify that x (0) = y (0) = 0 and that the given description holds at the point where t = 0. Sketch the graph. 31. x(t ) = t 3 , 32. x(t ) = t , 3 5 Calculate d 2 y/dx2 at the indicated point without eliminating the parameter. 37. x(t ) = cos t , y(t ) = sin t ; t = 1π. 6 38. x(t ) = t 3 , y(t ) = t − 2; t = 1. 39. x(t ) = et , y(t ) = e−t ; t = 0. 40. x(t ) = sin2 t , y(t ) = cos t ; t = 1 π . 4 c 41. Let x = 2 + cos t , y = 2 − sin t . Use a CAS to find d 2 y/dx2 . c 42. Use a CAS to find an equation in x and y for the line tangent to the curve: x = sin2 t , y = cos2 t ; t = 1π. 4 y (t ) = t 2 ; y (t ) = t ; 5 3 cusp. horizontal tangent. vertical tangent. tangent with slope 2. no tangent line. 33. x(t ) = t , 35. x(t ) = t 2 , y (t ) = t ; 34. x(t ) = t 3 − 1, y ( t ) = 2t 3 ; y(t ) = t 2 + 1; Then use a graphing utility to draw the curve and the tangent line together. 36. Suppose that x = x(t ), y = y(t ) are twice differentiable functions that parametrize a curve. Take a point on the curve at which x (t ) = 0 and d 2 y/dx2 exists. Show that d 2y x (t )y (t ) − y (t )x (t ) = 2 dx [x (t )]3 c 43. Repeat Exercise 42 with x = e−3t , y = et ; t = ln 2. (9.7.5) c 44. Use a CAS to find an equation in x and y for the line tangent to the polar curve: 4 ; θ = 1π. r= 3 2 + sin θ Then use a graphing utility to draw the curve and the tangent line together. 9.8 ARC LENGTH AND SPEED Arc Length In Figure 9.8.1 we have sketched the path C traced out by a pair of continuously differentiable functions† x = x(t ), C y = y(t ), t ∈ [a, b]. What is the length of this curve? Figure 9.8.1 We want to determine the length of C . Here our experience in Chapter 5 can be used as a model. To decide what should be meant by the area of a region , we approximated by the union of a finite number of rectangles. To decide what should be meant by the length of C , we approximate C by the union of a finite number of line segments. Each number t in [a, b] gives rise to a point P = P (x(t ), y(t )) that lies on C . By choosing a finite number of points in [a, b], a = t0 < t1 < · · · < ti−1 < ti < · · · < tn−1 < tn = b, we obtain a finite number of points on C , P0 , P1 , . . . , Pi−1 , Pi , . . . , Pn−1 , Pn . We join these points consecutively by line segments and call the resulting path, γ = P0 P1 ∪ · · · ∪ Pi−1 Pi ∪ · · · ∪ Pn−1 Pn , a polygonal path inscribed in C. (See Figure 9.8.2.) † By this we mean functions that have continuous first derivatives. ...
View Full Document

This note was uploaded on 10/12/2010 for the course MATH 12345 taught by Professor Smith during the Spring '10 term at University of Houston - Downtown.

Ask a homework question - tutors are online