SalasSV_09_08_ex_ans

# SalasSV_09_08_ex_ans - A-70 ANSWERS TO ODD-NUMBERED...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: A-70 ANSWERS TO ODD-NUMBERED EXERCISES √ 23. (a) at (− 2 , ± 2 3); 3 9 (b) at (−1, 0) y (3,7) 21. (a) at (3, 7) and (3, 1); (b) at (−1, 4) and (7, 4) y 25. (a) at ( ± 1 2 √ 2, ±1); (b) at ( ± 1, 0) y 1 (–1,0) (–1,4) (3,1) (7,4) (–1,0) –2 3 x x –√2 2 √2 2 (1,0) x –1 27. y = 0, (π − 2)y + 32x − 64 = 0 29. The slope of OP is tan θ1 . The curve r = f (θ ) can be parametrized by setting x(θ ) = f (θ ) cos θ , Differentiation gives x (θ ) = −f (θ ) sin θ + f (θ ) cos θ , If f (θ1 ) = 0, then x (θ1 ) = −f (θ1 ) sin θ1 , Since f (θ1 ) = 0, we have m= y ( θ1 ) 1 = − cot θ1 = − . x ( θ1 ) slope ofOP y (θ1 ) = f (θ1 ) cos θ1 . y (θ ) = f (θ ) cos θ + f (θ ) sin θ . y(θ ) = f (θ ) sin θ . 31. y 33. y 35. y (0,1) x x x 37. −8 39. 2 41. 1 sin3 t 43. y − 2 = − 16 (x − 1 ) 3 8 SECTION 9.8 √ 1. 5 3. 7 √ 5. 2 3 7. 4 3 9. 6 + 1 ln 5 2 11. 63 8 13. ln (1 + √ 2) 15. √ 3 2 17. 1 π 3 + 1 2 √ 3 √ √ 19. initial speed 2, terminal speed 4; s = 2 3+ ln (2 + 3) √ √ √ 23. initial speed 2, terminal speed 2 eπ ; s = 2(eπ − 1) 21. initial speed 0, terminal speed 25. 8a 13; x = 1 (13 27 √ 13 − 8) 29. 2π 27. (a) 24a (b) use the identities cos 3θ = 4 cos3 θ − 3 cos θ , sin 3θ = 3 sin θ − 4 sin3 θ √ √ √ 4π 1 1 7 33. 2 5(e − 1) 35. 4 − 2 2 37. ln (1 + 2) 39. c = 1 41. (a) ( 2 , − 2 ) 43. L = a b√ 31. √ 2(e4π − 1) 1 + sinh2 x dx = a b√ cosh2 x dx = a b cosh x dx = A 45. L ∼ 4. 6984 = 47. (a) y (b) 2.7156 x 49. 4 51. (b) 28.3617 53. 1 + [ f (x)]2 = 1 + tan2 [α (x)] = | sec [α (x)]| ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online