SalasSV_08_09_ex_ans - A-64 ANSWERS TO ODD-NUMBERED...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: A-64 ANSWERS TO ODD-NUMBERED EXERCISES 1 dx = 2 cos x du and the result follows. 1 − u2 du where u = cos x. The result follows. 1 − u2 x 37. Let u = tan . Then 2 39. csc x dx = sin x dx = sin2 x x +C 2 43. sin x dx = − 1 − cos2 x −2 +C 1 + tanh (x/2) 41. 2 tan−1 tanh SECTION 8.7 1. (a) 506 (b) 650 5. (a) π ∼ 3. 1312 = (c) 572 (d) 578 (e) 576 3. (a) 1.394 (b) 1.7915 (b) 0.9122 (c) 1.8090 (c) 1.1776 (d) 1.1533 (e) 1.1614 (b) π ∼ 3. 1416 = 7. (a) 1.8440 9. (a) 0.8818 (b) 0.8821 11. Such a curve passes through the three points (a1 , b1 ), (a2 , b2 ), (a3 , b3 ) iff b1 = a2 A + a1 B + C , 1 which happens iff A= b1 (a2 − a3 ) − b2 (a1 − a3 ) + b3 (a1 − a2 ) , (a1 − a3 )(a1 − a2 )(a2 − a3 ) B=− b1 (a2 − a2 ) − b2 (a2 − a2 ) + b3 (a2 − a2 ) 2 3 1 3 1 2 , (a1 − a3 )(a1 − a2 )(a2 − a3 ) b2 = a2 A + a2 B + C , 2 b3 = a2 A + a3 B + C , 3 C= a2 (a2 b3 − a3 b2 ) − a2 (a1 b3 − a3 b1 ) + a2 (a1 b2 − a2 b1 ) 1 2 3 . (a1 − a3 )(a1 − a2 )(a2 − a3 ) (b) n ≥ 2 15. (a) n ≥ 238 (b) n ≥ 10 17. (a) n ≥ 51 (b) n ≥ 4 19. (a) n ≥ 37 (b) n ≥ 3 13. (a) n ≥ 8 21. (a) 78 (b) 7 1 0 23. f (4) (x) = 0 for all x; therefore by (8.7.3) the theoretical error is zero 1 1 3 T −= = E2 8 3 24 (b) S1 − 0 b a 1 25. (a) T2 − x2 dx = x4 dx = 1 1 5 S −= = E1 24 5 120 29. (a) 49. 4578 (b) 1280.56 31. error ≤ 4. 01 × 10−7 27. Using the hint, Mn = area ABCD = area AEFD ≤ 1 f (x) dx ≤ Tn . 33. 0 4 dx = 4 tan−1 x 1 + x2 1 0 =4 π 4 −0 =π 3. 14159 (a) 3.14141 (b) 3.14159 SECTION 8.8 1. y1 is; y2 is not 11. y = x + C e2x 23. y = 2 e−x + x − 1 3. y1 and y2 are solutions 13. y = 2 3 5. y1 and y2 are solutions 15. y = C ee x 7. y = − 1 + C e2x 2 9. y = 2 2 5 + C e−(5/2)x 21. y = C (x + 1)−2 nx + Cx4 17. y = 1 + C (e−x + 1) 27. y = x2 (ex − e) 19. y = e−x 12 x 2 +C 25. y = e−x ln(1 + ex ) + e − ln 2 29. y = C1 ex + C2 x ex 41. (a) 200 ( 4 )t /5 5 (b) 200 2 ( 4 )t /25 5 35. T (1) ∼ 40. 10◦ ; 1. 62 min = dP = k (M − P ) dt (b) P (t ) = M (1 − e−0.0357t ) (c) 65 days 37. (a) v(t ) = 32 (1 − e−kt ) k (b) 1 − e−kt < 1; e−kt → 0 as t → ∞ 39. (a) i(t ) = E [1 − e−(R/L)t ] R E (b) i(t ) → (amps) as t → ∞ R L (c) t = ln 10 seconds R 43. (a) liters 45. (a) P (t ) = 1000 e( sin 2π t )/π (b) P (t ) = 2000 e( sin 2π t )/π − 1000 SECTION 8.9 1. y = C e−(1/2) cos (2x+3) 9. ln | y + 1| + 3. x4 + 2 =C y2 5. y sin y + cos y = − cos 1 x +C √ 7. e−y = ex − xex + C 1 − x2 15. y + ln | y| = x3 −x−5 3 1 = ln | ln x| + C y+1 11. y2 = C ( ln x)2 − 1 13. sin−1 y = 1 − ANSWERS TO ODD-NUMBERED EXERCISES 17. x2 1 + x + ln ( y2 + 1) − tan−1 y = 4 2 2 19. y = ln 3e2x − 2 23. x2 − y2 = C y y= x y 3 2 A-65 21. y = 3 x + C 2 25. y2 = −2x + C y x2 – y 2 = 1 y 2 = –2 x y = ex xy = 1 1 x xy = –1 x x y=– 2 3 y 2 – x2 = 1 x 27. A differential equation for the given family is y2 = 2xyy + y2 (y )2 . Now replace y by − which simplifies to y2 = 2xyy + y2 ( y )2 . Thus the given family is self-orthogonal. 29. (a) C (t ) = 31. (a) v(t ) = 33. (a) y(t ) = kA2 t 0 1 + kA0 t α c e(α/m)t −β (b) C (t ) = A0 B0 (ekA0 t − ekB0 t ) A0 ekA0 t − B0 ekB0 t (b) v(t ) = 1 2xy y2 . Then the resulting differential equation is y2 = − + , y y (y )2 , where C is an arbitrary constant. α v0 α v0 e−(a/m)t = (α/m)t − β v ( α + β v0 ) e α + β v0 − β v0 e−(α/m)t 0 (b) v(t ) = 15. 65(1 + 0. 70 e 1 − 0. 70 e−1.25t −1.25t (c) lim v(t ) = 0 t →∞ 25, 000 , y(20) ∼ 1544 = 1 + 249 e−0.1398t (b) 40 days 35. (a) 88. 82 m/sec ) (c) 15.65 m/sec CHAPTER 9 SECTION 9.1 1. (a) 2 13 (b) 29 13 3. (0, 1) is the closest point ( − 1, 1) the farthest away 5. 17 2 7. Adjust the sign of A and B so that the equation reads Ax + By = |C |. Then we have B |C | A +y√ =√ . x√ A2 + B2 A2 + B 2 A2 + B 2 Now set A = cos α , √ A2 + B 2 B = sin α , √ A2 + B2 |C | = p. √ A2 + B2 p is the length of OQ, the distance between the line and the origin; α is the angle from the positive x-axis to the line segment OQ. y Q P α O x 9. y2 = 8x y 11. (x + 1)2 = −12(y − 3) y (–1,3) 13. 4y = (x − 1)2 y 15. ( y − 1)2 = −2(x − 3 ) 2 y ( , 1) 3 2 x x (1,0) x x ...
View Full Document

This note was uploaded on 10/12/2010 for the course MATH 12345 taught by Professor Smith during the Spring '10 term at University of Houston - Downtown.

Ask a homework question - tutors are online