SalasSV_08_02_ex_ans - ANSWERS TO ODD-NUMBERED EXERCISES...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ANSWERS TO ODD-NUMBERED EXERCISES A-61 CHAPTER 8 SECTION 8.1 1. −e2−x + C 3. 2/π 5. − tan (1 − x) + C √ 2 17. 3 3 tan θ + 1 + C 19. (1/a) ln |a ex − b| + C 25. tan−1 (x + 3) + C 39. (Formula 99) 27. − 1 cos x2 + C 2 7. 1 2 ln 3 1 2 √ 9. − 1 − x2 + C 2 1 2 11. 0 ( 1 [x 2 + 1]) + C x )2 + C 13. e − 23. √ 1 2 e sin 15. π/4c −1 2 21. ln [(x + 1) + 4] − 31. 3/2 1 [ sin 2t 2 tan −1 x +C 37. √ 2 29. tan x − x + C 33. − 1 3 1 ( sin−1 2 35. ln |ln x| + C 43. (Formula 108) 1 3 √ x√ 2 x − 4 − 2 ln |x + x2 − 4| + C 2 √ x2 + 9 45. (Formula 81) − + ln |x + x2 + 9| + C x π 41. (Formula 18) sin3 2t ] + C ln x +C 2x + 3 47. (Formula 11) x4 π 0 ln x 1 − +C 4 16 √ 49. 2 2 51. (a) 0 π sin2 nx dx = 0 π cos 2nx 1 − 2 2 1 n 0 0 dx = sin 2nx 1 x− 2 4n = π 2 π /n (b) 0 sin nx cos nx dx = u du = 0 1 4 u = sin nx, du = 1 2 1 cos nx dx n (c) 1 6 (c) 0 sin nx cos nx dx = tan4 x + 1 2 1 n 0 0 u du = 0. 53. (a) (d) 1 2 tan2 x − ln | sec x| + C tan2k +1 x dx = √ 2, (b) tan4 x − tan2 x + ln | sec x| + C tan6 x − 1 4 tan2 x − ln| sec x| + C 55. (b) A = 1 tan2k x − tan2k −1 x dx 2k √ √ π 2 2+1 B= (c ) ln √ 57. (b) −0. 80, 5. 80 4 2 2−1 (c) 27.60 SECTION 8.2 1. −x e−x − e−x + C 9. 34 e 8 + 1 8 5. 2 − 5 e−1 7. −2x2 (1 − x)1/2 − 8 x(1 − x)3/2 − 3 √ √ 2 11. 2 x + 1 ln (x + 1) − 4 x + 1 + C 13. x(ln x) − 2x ln x + 2x + C +C 17. 1 x (x 15 3. − 1 e−x + C 3 3 16 (1 15 − x)5/2 + C 15. 3x 21. 3x2 x3 6x 6 − + − ln 3 (ln 3)2 (ln 3)3 (ln 3)4 + 1)10 − 1 x (x 55 + 5)15 − 1 (x 240 + 5)16 + C 19. 1 1 −2 2π π π −2 2 π 1 − ln 2 8 4 x [ sin (ln x) − cos (ln x)] + C 2 12 x (x 10 + 1)11 + 1 (x 660 + 1)12 + C 1 2 23. 1x e ( sin x 2 − cos x) + C 31. π + 24 √ 3−2 4 25. ln 2 + 33. 39. 27. 35. x n +1 x n +1 ln x − +C n+1 (n + 1)2 12 x 2 29. − 1 x2 cos x2 + 2 1 4 sin x2 + C sinh 2x − 1 x cosh 2x + 2 sinh 2x + C 37. ln x sin−1 (ln x) + 1 − (ln x)2 + C 41. Set u = ln x, dv = dx and integrate by parts. 45. Integrate by parts twice and solve for 51. (a) 1 (b) x = e2 1 e + , y = −1 4 4 2 43. Set u = ln x, dv = xk dx and integrate by parts. √ π 3−2 eax sin bx dx. + 47. π 49. 12 2 π2 (e + 1) 2 53. x = 1/(e − 1), y = (e + 1)/4 59. V = 4 − 8/π 61. V = 2π (e − 2) (c) x-axis: π (e − 2), y-axis: 55. x = 1 π , y = 1 π 2 8 57. (a) M = (ek − 1)/k 65. area = sinh1 = (b) xM = [(k − 1)ek + 1]/[k (ek − 1)] 63. x = (e2 + 1)/[2(e2 − 1)] e2 − 1 2 e4 + 4 e2 − 1 1 ; x= , y= 67. Let u = xn , dv = eax dx. Then du = nxn−1 dx, v = eax . 2e e+1 8 e(e2 − 1) a 73. ex [x3 − 3x2 + 6x − 6] + C 69. ( 1 x3 − 3 x2 + 3 x − 3 ) e2x + C 2 4 4 8 75. (a) (x2 − 5x + 6) ex + C 71. x[(ln x)3 − 3(ln x)2 + 6 ln x − 6] + C (b) (x3 − 3x2 + 4x − 4) ex + C 77. Let u = f (x), dv = g (x) dx. Then du = f (x) dx, v = g (x), and b a f (x)g (x) dx = [ f (x)g (x)]b − a b f (x)g (x) dx. a Now let u = f (x), dv = g (x) dx and integrate by parts again. The result follows. A-62 79. (a) π (b) 3π (c) 5π ANSWERS TO ODD-NUMBERED EXERCISES 81. (a) π − 2 ∼ 1. 1416 = ∼ (b) π 3 − 2π 2 = 11. 2671 (c) ( 1 π , 0. 31202) 2 (d) (2n + 1)π , n = 0, 1, 2, . . . SECTION 8.3 1. 11. 19. 27. 37. 1 3 1 2 1 2 cos3 x − cos x + C tan2 x + ln | cos x| + C sin4 x + C sin 3x − tan7 x + 1 14 3. π 12 13. 3 π 8 5. − 1 cos5 x + 5 15. 3 64 1 2 1 7 cos7 x + C 1 10 7. 1 4 sin4 x − 17. 1 3 1 6 sin6 x + C 9. (1/π ) tan π x + C cos x − 1 48 cos 5x + C 23. 31. 41. 1 12 tan3 x + C π 3 1 6 21. 5 x 16 − 1 4 sin 2x + 2 7 sin 4x + 2 11 sin3 2x + C √ 3− 25. − 1 csc5 x + 5 tan2 3x + 1 3 1 3 csc3 x + C 33. 2 105π 35. −1/6 1 6 sin 7x + C 29. 39. 1 3 sin7/2 x − sin11/2 x + C tan4 3x − ln| sec 3x| + C 1 7 1 5 tan5 x + C 45. π/2 cos ( 3 x) − 2 1 5 cos ( 5 x) + C 2 π2 −π 2 1 4 π + ln 2 4 43. √ π 3 − 2 6 47. 3π 2 8 49. 51. π 1 − 53. sin mx sin nx = 1 [ cos (m − n)x − cos (m + n)x], m = n 2 1 − cos 2mx , m=n 2 57. Let u = cosn−1 x, dv = cos x dx. Then du = (n − 1) cosn−2 x(− sin x) dx, v = sin x. sin mx sin nx = sin2 mx = cosn x dx = cosn−1 x cos x dx = cosn−1 x sin x + (n − 1) = cosn−1 x sin x + (n − 1) Now solve for 59. 63. 16 35 cosn−2 x sin2 x dx ( cosn−2 x − cosn x) dx cosn x dx. cotn x dx = cotn−2 x ( csc2 x − 1) dx = − cotn−1 x − n−1 cotn−2 x dx 61. cscn x dx = 1 2 cscn−2 x csc2 x dx. Now let u = cscn−2 x, dv = csc2 x dx and use integration by parts. 67. (a) A = 1 π 2 ∼ 4. 9348 = 2 65. (a) sin2 x + C (b) − 1 cos2 x + C 2 (c) − 1 cos 2x + C 4 (d) The results differ by a constant. SECTION 8.4 x 1. sin−1 +C a 3. 1 x 2 √ x2 − 1 − 1 2 ln |x + √ x 2 − 1| + C 5. 2 sin−1 x 1 − x 4 − x2 + C 2 2 √ x +C 15. ln ( 8 + x2 + x) − √ 8 + x2 23. 1 10 √ 1 2 3−π 625π 7. √ +C 9. 13. 11. − 1 (4 − x2 )3/2 + C 3 6 16 1 − x2 √ √ 1 a − a2 − x2 1 17. ln +C 19. 18 − 9 2 21. − 2 a2 + x2 + C a x ax √ 27. 1 e−x e2x − 9 + C 9 − 29. 1 + C, x > 2 2(x − 2)2 1 + C, x < 2 2(2 − x)2 +C 25. 1 a2 x x 2 − a2 + C 31. − 1 (6x − x2 − 8)3/2 + 3 3 2 √ sin−1 (x − 3) + 3 (x − 3) 6x − x2 − 8 + C 2 33. 8(x2 x2 + x 1 tan−1 − 16 + 2x + 5) x+1 2 35. Let u = sec−1 x, dv = dx and integrate by parts. ...
View Full Document

This note was uploaded on 10/12/2010 for the course MATH 12345 taught by Professor Smith during the Spring '10 term at University of Houston - Downtown.

Ask a homework question - tutors are online