SalasSV_07_09_ex_ans

# SalasSV_07_09_ex_ans - ANSWERS TO ODD-NUMBERED EXERCISES 35...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ANSWERS TO ODD-NUMBERED EXERCISES 35. Set au = x + b, a du = dx. dx ( x + b) ( x + b) 2 − a 2 37. domain ( − ∞, ∞), range (0, π ) 51. tan−1 2 − 1 π ∼ 0. 322 = 4 61. sin−1 (ln x) + C 71. 53. 1 −x 2 1 2 A-59 = 1 a du = √ a au a2 u2 − a2 43. 1 π 20 1 du |x + b| = sec−1 + C. √ a a u u2 − 1 47. 1 π sec−1 4 − 3 9 59. 49. 1 π 6 39. 1 π 4 41. 1 π 4 1 2 45. 57. 1 π 24 1 3 sin−1 x2 + C 55. tan−1 x2 + C 65. π 3 tan−1 ( 1 tan x) + C 3 4 3 1 ( sin−1 2 x)2 + C 63. √ 1 is not deﬁned for x ≥ 1. 67. 2π − √ 69. 4π ( 2 − 1) √ s2 + sk feet from the point where the line of the sign intersects the road. 1 π a2 ; 2 73. (b) area of semicircle of radius a 75. (a) There exist constants C1 , C2 such that f ( x ) + g ( x ) = C1 (b) lim f (x) = x→0+ π 2 for x < 0; f (x) + g (x) = C2 for x > 0. (e) C1 = π 2 ; x→0− lim f (x) = − π 2 (d) This is clear from the graphs in (a). ; C2 = − π 2 77. estimate ∼ 0. 523, sin 0. 523 ∼ 0. 499 explanation: the integral = sin−1 0. 5; therefore sin (integral)= 0. 5 = = 79. (a) 16 87 81. (a) (0.78615, 0.66624) (b) A ∼ 0. 37743 = (b) 0 (c) − 120 169 SECTION 7.8 1. 2x cosh x2 3. a sinh ax √ 2 cosh ax 5. 1 1 − cosh x 7. ab( cosh bx − sinh ax) 9. a cosh ax sinh ax 11. 2 e2x cosh (e2x ) 13. −e−x cosh 2x + 2 e−x sinh 2x 19. cosh2 t − sinh2 t = e t + e −t 2 2 15. tanh x − e t − e −t 2 2 17. ( sinh x)x [ln ( sinh x) + x coth x] = e2t − 2 + e−2t e 2 t − 2 + e −2 t − =1 4 4 + e t − e −t 2 e s − e −s 2 21. cosh t cosh s + sinh t sinh s = e t + e −t 2 e s + e −s 2 = 1 ( e t −s + e s −t + e t −s + e −t −s + e t +s − e s −t − e t −s + e −t −s ) 4 = 1 (et −s + e−(t +s) ) = cosh (t + s) 2 23. cosh2 t + sinh2 t = 25. sinh ( − t ) = e t + e −t 2 2 + e t + e −t 2 2 = 1 (e2t + 2 + e−2t + e2t − 2 − e−2t ) = 4 27. absolute max −3 e2t + e−2t = cosh 2t 2 e −t − e −( − t ) e −t − e t = = − sinh t 2 2 e x + e −x e x − e −x + 2 2 33. n 29. [ cosh x + sinh x]n = 31. A = 2, B = 1 , C = 3 3 41. 1 ( sinh x cosh x 2 1 4 = [ex ]n = enx = enx + e−nx enx − e−nx + = cosh nx + sinh nx 2 2 39. − 1 +C a cosh ax + x) + C 1 1 1 sinh ax + C 35. sinh3 ax + C 37. ln ( cosh ax) + C a 3a a √ 43. 2 cosh x + C 45. sinh 1 ∼ 1. 175 47. 81 49. π = 20 53. (a) (0. 69315, 1. 25) (b) A ∼ 0. 38629 = 51. π [ln 5 + sinh (4 ln 5)] ∼ 250. 492 = SECTION 7.9 1. 2 tanh x sech2 x 3. sech x csch x 5. 2e2x cosh( tan−1 e2x ) 1 − e 4x 7. √ −x csch2 ( x2 + 1) √ x2 + 1 9. − sech x( tanh x + 2 sinh x) (1 + cosh x)2 A-60 11. ANSWERS TO ODD-NUMBERED EXERCISES cosh x sinh x 1 sinh x = sinh2 x − cosh2 x −1 = = − csch2 x sinh2 x sinh2 x cosh x = − csch x coth x sinh2 x 15. (a) 3 5 d d ( coth x) = dx dx d d ( csch x) = dx dx 13. =− (b) 5 3 (c) 4 3 (d) 5 4 (e) 3 4 17. If x ≤ 0, the result is obvious. Suppose then that x > 0. Since x2 ≥ 1, we have x ≥ 1. consequently, √ √ √ √ x − 1 = x − 1 x − 1 ≤ x − 1 x + 1 = x2 − 1 and therefore x − x 1+ √ 1 x2 + 1 + 1)] = =√ √ x + x2 + 1 x2 + 1 = 1 · 2 1 1+x 1−x · 1 2 = (1 − x)2 1 − x2 x2 − 1 ≤ 1. d d 19. ( sinh−1 x) = [ln (x + dx dx 21. d 1d ( tanh−1 x) = ln dx 2 dx x2 1+x 1−x 23. Let y = csch−1 x. Then csch y = x and sinh y = 1 1 . Thus cosh y · y = − 2 and x x y =− 1 =− x2 cosh y 1 x2 1+ 12 x =− 1 . √ |x| 1 + x2 25. (a) absolute max (0, 1) (b) points of inﬂection at x = ln (1 + −0. 881 √ √ 2) ∼ 0. 881, x = −ln (1 + 2) ∼ = = (d) y √ √ (c) concave up on √ ∞, −ln (1 + 2)) ∪ (ln (1 + 2), ∞); concave down (− √ on ( − ln (1 + 2), ln (1 + 2)) –0.881 0.881 x 27. y sinh x 29. (a) tan φ = sinh x φ = tan−1 ( sinh x) cosh x dφ cosh x 1 = = = = sech x dx cosh x 1 + sinh2 x cosh2 x (b) sinh x = tan φ x sinh– x x = sinh−1 ( tan φ ) = ln ( tan φ + (c) tan2 φ + 1) = ln ( tan φ + sec φ ) = ln ( sec φ + tan φ ) x = ln ( sec φ + tan φ ) dx sec φ tan φ + sec2 φ = = sec φ dφ tan φ + sec φ 31. ln ( cosh x) + C 33. 2 tan−1 (ex ) + C 35. − 1 sech3 x + C 3 37. 1 [ln ( cosh x)]2 2 +C 39. ln |1 + tanh x| + C 41. Let x = a sinh u, dx = a cosh u du. Then dx = √ a2 + x 2 43. Suppose |x| < a. Let x = a tanh u, dx = a sech2 u du. Then dx = − x2 1 a sech2 u du = a − a2 tanh2 u du = 1 x tanh−1 + C. a a a cosh u a2 + a2 sinh u 2 du = du = sinh−1 x + C. a a2 The other case is done in the same way. 45. (a) f (x) = sech x (1 + tanh x)2 a2 (b) f (x) = x tanh−1 (x2 ) ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern