SalasSV_11_SkillReview_ans - A-112 21. ANSWERS TO...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: A-112 21. ANSWERS TO ODD-NUMBERED EXERCISES 23. 9 9 2 2 1 1 + g 2 (x ) + C 2 25. 1 8 27. 4 − 64/3 4 29. 19 3 31. 9 2 33. 1 9 3 35. 3 4 37. (a) −1 1 2 + x − x2 dx = 39. (a) 1 4 2 2(x − 1) dx + 2(x − 1) − x + 5 dx (b) −2 2 − y + y dy + 43. 2 2 − y dy 45. (a) −1 2 π r3 3 (b) −2 y + 4 − 1 y2 dy = 18 2 47. 8 + π2 2π y= 64 21 41. 1 1 + x2 2x 1 − 1 + x4 1 + x2 57. (a) (b) f (x) = − sin x √ 59. 3 3 13 2 49. 4 π 15 51. 6 π 7 53. π − 1 π 2 4 65. x = y = 16 ; 35 55. 2π (b) 16 π 35 43 r 3 61. x = 16 , 15 63. x = 0, y = 1 π 8 the two volumes are equal: V = 67. inches 69. 1100 ft-lbs ANSWERS, SKILL MASTERY REVIEW THREE (p. 512) 1. f −1 (x) = (x − 2)3 7. f (x) = 3. f is not one-to-one 1 2 5. f (x) = −ex < 0 on (−∞, ∞); ( f −1 ) (1 + ex )2 11. ex − e3x (1 + e2x )2 13. 1 2 = −4 3x2 + 3x ln 3 x 3 + 3x 3 − 4 ln |x + 1| + C x 23. − 2 cos3 x + C 3 33. π 12 √ 4 + x2 > 0 on (−∞, ∞); ( f −1 ) (0) = x tanh x − ln ( cosh x) x2 17. 2 3 9. 24 [ln x]2 x 15. ( cosh x)1/x 25. 35. 1 2 19. 2[x cosh x − sinh x] + C 1 2 21. 4 ln |x| + − 1 e −2 4 41. 1 2 [x ln |x + 1| − x + ln |x + 1|] + C √ 37. − 27. ln | sec x| − sin2 x + C 39. 1 6 29. 3 4 31. − 1 [ln ( cos x)]2 + C 2 ln 2 + √ 3− 1 4 x 2x 2x − +C ln 2 (ln 2)2 1 2 a2 − x 2 − sin−1 x 45. 1 π 2 1 2 x +C a tan6 x + C 49. x = ln 3 43. sin−1 x − 1 2 √ √ x 1 − x2 − 1 − x2 + C 47. a2 ln 2 √ 6−3 3 3 ln 3 , y= π 2π 51. (b) A = 2 (c) x = 1 π , y = 5 π 2 8 53. [1 − ln 4 + e2 (1 + ln 4)] 55. (a) f increases on (−∞, −1] and [0, 1]; f decreases on [ − 1, 0] and [1, ∞]; (b) absolute max: f (−1) = f (1) = e−1 ; absolute min: f (0) = 0 √ √ √ (c) concave up on −∞, − 1 5 + 17 , − 1 5 − 17, 1 5 − 17 , and 2 2 2 √ √ and 1 5 − 17, 1 5 + 17 2 2 (d) 1 2 5+ √ 17, ∞ ; concave down on − 1 5 + 2 √ 17, − 1 5 − 2 √ 17 0.2 –4 –2 2 4 57. T = − ln 2 ∼ = 3. 1 years ln 0. 8 59. (a) 6.94 grams (b) 18,935 years ago ANSWERS, SKILL MASTERY REVIEW FOUR (p. 704) 1. 2 1 –4 –3 –2 –1 –1 –2 –2 –1 –1 –2 –3 3. 2 1 1 2 6π 9 π 4 ANSWERS TO ODD-NUMBERED EXERCISES 5. 1 − 1 π 4 √ 7. x + y = 2 2 9. parabola 11. ln 3 − 1 2 A-113 13. 992 π 3 15. (a) min speed at t = 1 , max speed at t = 1 4 (b) 1 23. converges to 0 41. 4 43. 2 25. diverges 45. divergent 17. unbounded, increasing 19. unbounded, increasing from a3 on 35. a − a ln a 21. converges to 1 2 e 27. converges to ln 8 47. absolutely convergent 57. divergent 29. 5 31. − 1 2 33. 0 37. 39. diverges 49. conditionally convergent 59. convergent ∞ 51. absolutely convergent 11 ,) 55 53. conditionally convergent ∞ 55. convergent (−1)k −1 k x 2k − 1 61. [ − 63. (−∞, ∞) ∞ 65. (−9, 9) (−1)k +1 (x − 1)k , R = 1 k 67. k =0 2 k 2 k +1 x k! ∞ 69. k =1 71. 1 − 1 x − 1 x2 − 3 9 53 x 81 73. e2 k =0 (−1)k 2k (x + 1)k , R = ∞ k! 75. k =1 ANSWERS, SKILL MASTERY REVIEW FIVE (p. 940) √ 1. −9 i − 5 j − 2 k 5. cos θ = 3. 90 √2 714 1 7. ± √293 (6 i − j + 16 k ) 9. (a) x = 5 + 4t , y = 6 − 7t , z = −3 + 5t (b) x = 5 − 10t , y = 6 − 5t , z = −3 + t (c) x − 3y − 5z − 2 = 0 11. (a) no 19. (b) yes 13. 2x + 3y − 4z − 19 = 0 15. 2x − 2y − z − 6 = 0 21. v(t ) = 2 i + a (t ) = − 17. f (t ) = 2e2t i + 2t 2 − 2t 2 j; f (t ) = 4e2t i + 2 j t2 + 1 (t + 1)2 f (t ) = 2 cosh 2t i + (te−t − e−t ) j + sinh t k ; f (t ) = 4 sinh 2t i + (2e−t − te−t ) j + cosh t k 1 1 j − 2t k ; ||v(t )|| = 2t + ; t t 23. f (t ) = 13 t 3 +1 i+ 1 2t e 2 +t− 7 2 j+ 1 [2t 3 + 1]3/2 + 8 3 k 1 j − 2k t2 25. 2 –1 –2 –3 10 15 27. 29. r π 3 √ √ = − 3 i − j + k ; x = − 1 − 3t , y = 2 √ 3 2 − t, z = π 3 +t 1 31. T(t ) = − √2 sin t i − 1 N(t ) = − √2 cos t i − 1 √ 2 1 √ 2 sin t j − cos t k cos t j + sin t k 33. 38 3 35. √ 2 sinh 1 37. (a) 1 2(1 + e−2t )3/2 (b) 1 |t |(1 + t 2 )3/2 39. κ = 1, aT = 0, aN = 1 43. circles 3 2 1 –3 –2 –1 –1 x –2 –3 1 2 3 (3, 0, 0) 41. (a) dom ( f ) = {(x, y) : x2 − y2 > 1}; range ( f ) = (−∞, ∞) (b) dom ( f ) = {(x, y, z ) : x2 + y2 < z }; range ( f ) = [0, ∞) 45. plane z (0, 0, 2) (0, 6, 0) y 47. ∂z ∂z = x2 y2 cos (xy2 ) + 2x sin (xy2 ); = 2x3 y cos (xy2 ) ∂x ∂y fxx = 4yz 3 + y2 z 2 exyz ; fzx = 12xyz 2 + yexyz + xy2 zexyz fyz = 6x z + xe 22 xyz 49. gx = x y z ; gy = 2 ; gz = 2 x2 + y2 + z 2 x + y2 + z 2 x + y2 + z 2 53. (a) ∇ f = (4x − 4y) i + (−4x + 3y2 ) j (b) ∇ f = y3 − x2 y x3 − xy2 i+ 2 j ( x 2 + y 2 )2 (x + y2 )2 51. + x yze 2 xyz 55. 2 √ 5 √ 57. e 5 59. √ 1 1 tangent plane: − √2 (x − 1) + √2 (y + 1) − (z − 2) = 0; √ 1 1 normal line: x = 1 − √2 t , y = −1 + √2 t , z = 2 − t ...
View Full Document

This note was uploaded on 10/12/2010 for the course MATH 12345 taught by Professor Smith during the Spring '10 term at University of Houston - Downtown.

Ask a homework question - tutors are online